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Abstract 
 

The increasing complexity of modern computer sys-

tems makes fault detection and localization prohibi-

tively expensive, and therefore fast recovery from fail-

ures is becoming more and more important. A signifi-

cant fraction of failures can be cured by executing spe-

cific repair actions, e.g. rebooting, even when the exact 

root causes are unknown. However, designing reason-

able recovery policies to effectively schedule potential 

repair actions could be difficult and error prone. In 

this paper, we present a novel approach to automate 

recovery policy generation with Reinforcement Learn-

ing techniques. Based on the recovery history of the 

original user-defined policy, our method can learn a 

new, locally optimal policy that outperforms the origi-

nal one. In our experimental work on data from a real 

cluster environment, we found that the automatically 

generated policy can save 10% of machine downtime. 

 

1. Introduction 
 

Maintaining high dependability has always been a 

critical topic for computer systems. Doing so usually is 

implemented in two ways: increasing reliability or 

availability. Reliability characterizes the ability of a 

system to perform services correctly, which can be 

measured by the meantime between failures (MTBF). 

Availability means that the system is available to per-

form services, which can be characterized by the mean-

time to repair (MTTR). Despite great improvements in 

research and practice in software engineering, latent 

bugs in complex software systems persist, and often it 

is just too difficult to improve system reliability by 

recognizing faults or fixing bugs. Actually, as the 

complexity of the software systems increases dramati-

cally, analyzing system problems and finding root 

causes has become costly and time-consuming work 

even for skilled operators and diagnosticians [13][18]. 

Making computer systems more consistently available 

is indeed practical and can increase effectiveness and 

productivity.  

Traditional fault tolerant techniques rely on some 

form of redundancy to achieve high availability, which 

can come in the form of function or data redundancy. 

However, such methods usually sacrifice system per-

formance and can cause high hardware costs and in-

crease complexity. For example, process pairs [3] util-

ize good processors taking over the functionality of 

failed processors in which non-stop processing is at the 

cost of hardware redundancy and performance. Aura-

gen [4] also applies a similar scheme to the UNIX en-

vironment.  

Another important way to achieve high availability 

is through recovery schemes that restore systems to a 

valid state after a failure. One of these recovery 

schemes is based on check-pointing, which periodical-

ly creates a valid snapshot of a system’s state and, in 

the case of a failure, returns the system to a valid state. 

Often this method is system-specific and may create 

great burdens on system designers and operators. Bak-

er et al. [1] utilized Recovery Box to realize quick re-

covery in which operating systems and application 

programs need to use the interface provided by Recov-

ery Box to implement data insertion and retrieval. 

Moreover, it is difficult to determine the right time to 

create a checkpoint and ensure its validity.  

A more popular recovery scheme is simple rebooting 

technique, which can be applied at various levels and is 

employed by many nontrivial systems today. Actually, 

a significant fraction [5][10][14][22] of failures are 

cured by simple recovery mechanisms such as reboot-

ing even when exact causes are unknown. Candea et al. 

[6] built crash-only programs to crash safely and re-

cover quickly, and then improved this approach by 

introducing a fine-grained mechanism called microre-

boot [7] which can provide better recovery perfor-

mance and cause less disruption or downtime. 

However, to achieve efficient error recovery, poten-

tial repair actions need to be scheduled reasonably 



based on policies like state-action rules. An example of 

such policies includes recursively attempting the re-

maining cheapest action [7]. This simple policy may 

not be sufficient in real environments because of im-

precise fault localization, recurring failures, or failed 

repair actions [8]. The overall cost of cheap actions, 

including the time for observing recovery effects, is 

actually not that negligible either. Due to similar diffi-

culties in root cause analysis, as mentioned above, ge-

nerating recovery policies automatically could be im-

portant in effective error recovery. Joshi et al. [16][17] 

attempt to tackle the problem with a model-based ap-

proach that enables automatic recovery in distributed 

systems. Though their method works well in simulated 

experiments, there are still problems. First, the method 

needs detailed information on the system model, which 

is often too complex to obtain for large-scale systems. 

Second, it can locate faults well along the recovery 

process, but may have difficulties in determining how 

to deal with the faults since some faults may need the 

combination of several actions to complete a recovery 

in real systems.  

In this paper, we also utilize application-independent 

techniques to achieve automatic recovery. However, 

we are focusing on recovery policy generation when 

system models are not available. To the best of our 

knowledge, this has not been fully studied before. We 

have investigated how to make proper decisions on 

which repair action to choose when the actual root 

cause is only localized at a coarse level. Particularly, 

we propose a novel approach based on reinforcement 

learning (RL) to automatically find the locally optimal 

policy, and show that it can achieve better recovery 

performance. Another benefit of our learning-based 

approach is that it can adapt to the change of the envi-

ronment without human involvement. 

Our contributions are as follows:  

1. An offline reinforcement learning method to au-

tomatically generate optimal recovery rules. We 

should point out that the generated rules are local-

ly optimal since the learning is restricted by the 

original, user-defined rules to be optimized.  

2. A hybrid approach to handle noisy states that 

cannot be cured by generated rules. The results 

show that our approach cannot only maintain 

nearly the same performance as using the gener-

ated rules in isolation, but also can cover all poss-

ible states.  

3. A new type-oriented model of automatic error 

recovery. Each rule corresponds to a potential er-

ror type induced from the recovery log.  

4. Some experience in reducing rule-training time. 

By using a selection tree, we can guarantee dis-

covery of optimal rules within much less time 

than the standard RL process. 

The rest of the paper is organized as follows. Sec-

tion 2 defines the automatic recovery problem and pro-

vides an overview of our approach. Section 3 gives 

additional details on the training method, and presents 

some assumptions based on how a reasonable evalua-

tion cab be conducted. Section 4 describes our experi-

mental data and evaluation framework. Section 5 

presents experimental results. Section 6 discusses re-

lated work and Section 7 serves as our conclusion. 

 

2. Overview 
 

An automatic recovery framework typically consists 

of three functions: event monitoring, fault detection, 

and error recovery, as shown in the upper part of  Fig-

ure 1. A recovery process may run like the following: 

Event monitoring collects various information and 

events for further analysis, such as symptoms of error 

states corresponding to different faults that occur in the 

target system. Then, fault detection recognizes failures 

and informs error recovery so that it can decide which 

repair action should be used based on the given recov-

ery policy and the failure information. The chosen ac-

tion is applied to the corresponding component and the 

result of the recovery will be monitored, which may 

lead to another round of recovery. 

Figure 1: Automatic recovery framework. 
Usually, recovery policies are user-defined by sys-

tem developers or operators. The issues with this ap-

proach are manifold. First, policies are often difficult 

to build and evaluate for large-scale, complex systems 

in which detailed system models may not always be 

available or up to date. Second, an ideal policy should 

be able to target each fault. However, due to the limita-

tion of fault localization, people often have to build 

coarse-grained policies to cover all possible error 

states. This sometimes may be too inaccurate to guar-

antee the desired result. Third, unanticipated errors and 

varying symptoms may appear throughout the running 

of systems, which requires policies evolve over time. 

In our recovery framework we have two additional 

offline components for automatically generating recov-

ery policies, as shown in the lower part of Figure 1. 

Recovery log keep a history of error recovery via the 



event monitoring component. Policy generation com-

ponents learn recovery policies from the recovery his-

tory with statistical induction techniques to instruct 

error recovery. Specifically, we use reinforcement 

learning to generate error type-oriented policies. Our 

simulated experiments show that the policies learned 

by our method outperform manual ones.  

 

2.1. Problem formalization 
 

If we consider the recovery process as selecting a 

repair action according to current state and then getting 

a reward (e.g. recovery time) after taking the action, 

we can naturally formalize it as a sequential decision-

making process, or particularly a Markov decision 

process (MDP) [15]. 

A Markov decision process can be represented as a 

tuple ��, �, �, �, ���, where � is the set of possible error 

states, each of which consists of some related features; 

In particular, �� is all possible starting states; � is the 

available repair actions; � is the state transition func-

tion, which decides the next state 	
��  based on the 

current state 	
 and the selected action 
; � is the cost 

function, which determines the cost for executing an 

action under an error state. In our experiments, we use 

Meantime to Repair (MTTR) as the metric for evalua-

tion, so � is based on recovery time (downtime). There-

fore our goal is to minimize the expected cost �,  

� � ��� ��	
 , 
��                        �1�
�


��
 

that is, to achieve the shortest recovery time. We will 

give more detailed explanation in Section 3.2. 

 

2.2. Reinforcement learning and Q-learning 
 

As further background of our method, we give a 

brief introduction to reinforcement learning, an unsu-

pervised learning method for sequential decision mak-

ing. In this learning paradigm, the learning agent rece-

ives reinforcement (reward) after each action execu-

tion. The objective of learning is to construct a control 

policy so as to minimize the discounted cumulative 

reinforcement in the future or, for short, utility:  

�
 � � ���
��                       �2�
�

���
 

which is a generalized form of equation (1). � is the 

discount factor. In this paper, we simply set it to 1.0 to 

make sure the expected cost is equal to MTTR. 

Q-learning is a widely used reinforcement learning 

algorithm. The idea of Q-learning is to construct an 

evaluation function called Q-function,  

��	���, ���� � ! "��#��$ 

to predict the utility when the agent is executing some 

action in certain state. Given an optimal Q-function 

and a state 	, the optimal control policy is simply to 

choose the action  such that ��	, � is minimal over 

all actions. Often the Q-function can be represented in 

a generalized way like multi-layer neural networks and 

incrementally learned through temporal difference 

(TD) methods [23]. Given a sequence of state transi-

tions, the Q-function can be computed by iteratively 

applying the learning procedure to each two successive 

states along the sequence. Note that this procedure is 

actually the simplest form of TD methods, %&�0� . 

More details and discussions on Q-learning algorithm 

can be found in standard machine learning textbooks or 

related papers [20][21].  

 

2.3. Automated policy generation 
 

In this section, we will present the motivation for of-

fline training and a brief description of the policy gen-

eration process.  

 

2.3.1. Offline training. There are a few issues in ap-

plying reinforcement learning to learn recovery poli-

cies online.  

1. Before finding out the optimal policy, the RL 

training process may explore many bad policies, 

which, once applied, might seriously degrade 

normal system performance.  

2. The training process may start with an arbitrarily 

bad policy.  

3. The training process requires tens of thousands of 

observations. For error recovery, several years 

may be required to converge for infrequent errors.  

To address these limitations, we devised an offline 

training method that enables RL to take advantage of 

user-defined policies. Although it is at the cost of miss-

ing the globally optimal policy and only producing the 

locally optimal one, the obvious improvement it can 

bring to original policies and the avoidance of online 

training overhead still makes it a reasonable choice. 

 

2.3.2. RL approach. We use the error types induced 

from failure symptoms to approximate the real faults. 

An induced error type represents the errors that share 

the same symptoms, which ideally corresponds to a 

unique fault, though different faults may be inferred as 

the same error type. Specifically, we simply use the 

error types and the previously tried actions to form the 

states. The learning algorithm analyzes a real-world 

recovery log generated by a user-defined policy and 

computes the value of the Q-function ��	, �, which 

satisfies the following equation  

��	, � � ����	, �� ( � )�	*|	, �,� -.��	*, *�
/.

 

, where 	* � ��	, �                            �3�  



Here, the Q-function ��	, �  stands for the minimal 

time cost for state s beginning with action . The gen-

erated recovery policy may be restricted by two fac-

tors, the error types and the original recovery policy, so 

it can only achieve local optimum.  

 

3. Approach 
 

This section gives details on the RL approach to au-

tomatic recovery policy generation, and discusses some 

difficulties and our solutions. 

function Q-learning 

input 

 Pr   recovery processes (in the recovery log) 

 Q    initial Q-function values 

return 

 updated Q-function values 

begin 

// select one recovery process from Pr 

p = SelectProcess(Pr) 

// induce error type based on recovery process 

t = InduceErrorType(p) 

// build initial state 

s = InitialState(t) 

// explore different recovery actions 

while(!Healthy(s)){ 

  a = SelectRecoveryAction(Q, s) 

  c = UpdateState(Pr, s, a, s’) 

  Record(s, a, c, s’) 

  s = s’ 

} 

// update Q-function values 

for every two successive states s, s’ in record 

   UpdateQfunction(Q, s, s’) 

return Q 

end 

Figure 2: Q-learning algorithm for optimal pol-
icy generation 

As stated in the previous section, we use Q-learning 

algorithm to obtain repair policy. The training process 

is implemented by applying Q-learning algorithm to 

each error type, which can be inferred from error 

symptoms in the recovery log. The procedure de-

scribed in Figure 2 is iteratively used on the recovery 

log to get an optimal Q-function. In the following sec-

tions, we provide a closer look at each key step. 

 

3.1. Error type inference and noise filtering 
 

In this paper, we attempt to extract potential faults 

based on the error symptoms in the recovery log.  

To get a rough idea of how symptoms are distri-

buted, we generate a number of symptom sets from a 

real-world recovery log (to be introduced in section 

4.1). In each set, the symptoms are highly related based 

on the ratio of the number of recovery processes in 

which they appear together out of all the recovery 

processes in which one symptom appears. Due to the 

fact that some symptoms may occur quite infrequently, 

we use m-pattern algorithm [19], which is capable of 

finding infrequent but highly correlated items, to mine 

mutually dependent symptoms in the log. The strength 

of mutual dependence is measured by parameter minp.  

We summarize the percentage of the recovery 

processes with only highly dependent symptoms for 

various dependence strength in Figure 3. We can ob-

serve that the whole log is mainly made up of a number 

of highly cohesive symptom sets. Additionally, we find 

different sets share few intersections. This motivates us 

to generate policy at symptom level since we do not 

have any knowledge about real faults. Actually, we 

think the symptom sets may have strong correlation 

with the faults in the system. Based on these observa-

tions, we define error type as the initial symptom of a 

recovery process to approximate the real fault. For 

example, if the sequence of symptoms occurring dur-

ing a recovery process is “A; B; C”, then we use symp-

tom “A” to represent its error type. We choose the ini-

tial symptom since it is usually representative enough 

of the symptom set to which it belongs and the other 

symptoms in the recovery process often co-occur with 

it.  Based on this definition, we employ the error type 

as the unit in building recovery policies. 

 
Figure 3: Symptom sets extracted from recov-
ery log 

Moreover, we still need do some noise filtering 

based on the above results because the evaluation is 

based on a simulation platform in our experiments and 

those noise data are often too difficult to simulate and 

may impact the precision of the evaluation. Actually 

we choose minp = 0.1 in m-pattern algorithm, and ul-

timately get 119 symptom clusters covering 96.67 % of 

the total logs. The left 3.33% are regarded as noisy 

cases that may contain more than one error. The noise 

data only take up a trivial part within the logs, so the 

filtering process does not influence the conclusions 

much. Although our RL approach can also be applied 

to these noisy cases, we still ignore them to get a pre-

cise evaluation. 
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3.2. State transition 
 

We use error types (beginning symptoms) and pre-

viously tried repair actions to define states. A state 	
 is 

represented by a tuple ��, 2, �3 , �, … , 
5� ��, where 

�  is error type, 2  is the recovery result (failure or 

health) before time �, and 6, � � 0, 1, … , � 7 1, are all 

repair actions executed before. From this definition, it 

is obvious that before the last repair action the recovery 

result 2 of any state will be 8 (failure) and after that it 

will become 9 (health). This definition also makes au-

tomatic error recovery a Markov decision process.  

Transition function, �, here is partially known, since 

the state 	
�� produced by the acts on 	
 � ��, 8, ��,
�, … , 
5��� and 
  could only be two types, 	
��

: �
��, 8, ��, �, … , 
5�, 
��  or 	
��; � ��, 9, ��, �, … ,

5�, 
�� , the probabilities of which depend on the 

environment and properties of the errors. So the equa-

tion (3) could be rewritten as 

��	
 , 
� � ����	
 , 
�� ( <�	
 , 
� min-@AB
��	
��

: , 
��� 

,where 	
��
: �  ��	
 , 
�                   �4� 

Figure 4 illustrates the decisions and possible se-

quences in a recovery process after an error is detected. 
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Figure 4: Error recovery process. The Q-
function D�E, F� is the expected time cost for 
both two directions (failure or health). 

We restrict the count of the repair actions to a finite 

number N for each recovery process (in the experiment 

we set N = 20). It means that if the preceding N-1 re-

pair actions fail to cure the problem, we will end the 

process by requesting a manual repair (the recovery 

action which is to be conducted by human). Since all 

policies produced with this limitation are proper, ac-

cording to the theorem of value contraction in [14], our 

RL method will converge with probability 1. 

 

3.3. Explore strategy and table update 
 

To explore different repair actions, we first need to 

infer the state transitions based on the existing recov-

ery processes. This amounts to finding the correct re-

pair actions for each recovery process. The easiest me-

thod is to choose the last repair action as the correct 

one. However, it may not always be safe to make such 

assumptions and sometimes some stronger repair ac-

tions also play an important role in the recovery 

process. A more realistic assumption is to regard both 

the last action and other stronger actions as the correct 

repair actions. Besides, since a stronger action includes 

the processes of the weaker ones, it can at least cause 

the same effect as the weaker ones. Based on this anal-

ysis, our hypotheses about the recovery process is as 

follows:  

1. For any successful recovery process, we need at 

least the same correct repair actions (including the 

last action and the stronger ones in the process) to 

achieve the same recovery result. 

2. Stronger actions can replace weaker ones in a 

successful recovery process. 

3. Recovery processes for different errors are inde-

pendent of each other.  

With these hypotheses, we can carry out the explore 

strategy and estimate the time cost for each possible 

policy. 

Starting from some initial states of recovery 

processes, we have to explore a large enough state 

space first and then find the optimal policy. We can 

roughly divide the learning course into two phases, one 

for exploration and the other for search. Like the simu-

lated annealing algorithm, we use a temperature % to 

control the learning course from exploration to search.  

Actually, at time � for certain error �, we will utilize 

the following probability distribution (Boltzmann dis-

tribution) to select a repair action stochastically,  

)�6|	
� � �5G�/@,-H�
I

∑ �5G�/@,-H�
IK

,   6 L �             �5� 

Here, the temperature % will decrease with more and 

more recovery processes analyzed, so the repair action 

will eventually be selected completely based on Q val-

ues, thus generating the policy. 

    When a repair action is selected, its time cost will be 

estimated based on the recovery log. Specifically, one 

of the following values will be chosen: actual time cost 

in the recovery process average success time cost, or 

average failing time cost. Based on these values, we 

can further update the Q-function and reasonably eva-

luate the policy. As we show in Section 4.2, this ap-

proach works well in our experiments.  

Another important step in the whole training course 

is how to update the Q values. In our method, we chose 

to use a table look-up representation of the Q-function 

and update the Q values based on the following equa-

tion,  

          �N�	, � O �1 7 PN��N5��	, �
( PN Q��	, � ( min-. �N5��	*, *�R 

and, PN �  �
S6/6
/T�/,-�                           �6� 



where ��	, �  records the expected value of the Q-

function, and ��	��	�	, � represents how many times 

�	, � pair is explored. It is easy to prove that this up-

dating method is contracted and Q values will even-

tually converge to the optimal ones [20]. 

 

3.4. Hybrid approach 
 

Occasionally, the RL-trained policy might fail to re-

pair some exceptional error cases. To get beyond this 

issue, we provide a hybrid approach that combines the 

trained policy with the user-defined one. In particular, 

if an error still exists after the last action selected ac-

cording to the trained policy, we will automatically 

revert to the user-defined policy. Since these noisy 

cases do not happen frequently, the hybrid policy  can-

not only guarantee to repair all errors as well as the 

user-defined policy does, but also can maintain the 

advantage of automatic policy generation with RL, as 

we show in Section 5.2.  

 

4. Experimental setup 
 

This section introduces the data used in our experi-

ments and the simulation platform that outputs feed-

back of a repair action on a state -based on the hypo-

theses.  

 

4.1. Experimental data 
 

Our experimental data are based on the recovery log 

collected from a large-scale cluster system with thou-

sands of servers that contained more than 2 million 

entries of error symptoms and repair actions over near-

ly half a year of operations. The recovery policy used 

in the real system is user-defined, which mainly tries 

the cheapest action enabled by the state. There are four 

actions for repairing a machine: TRYNOP (simply 

watch and do not try any operation), REBOOT, REI-

MAGE (rebuild the operating system), and RMA (let 

human repair).  

Table 1: Example of recovery process (ma-
chine name is omitted). 

Time Description (details omitted) 

3:07:12 am error:IFM-ISNWatchdog: … 

3:10:58 am errorHardware:EventLog: ... 

3:23:26 am TRYNOP 

3:25:37 am errorHardware:EventLog: ... 

3:27:34 am errorHardware:EventLog: ... 

3:42:10 am REBOOT 

4:13:07 am Success 

The log entries can be represented in the format of 

<time, machine name, description>, in which the de-

scription can be the repair action, symptom of an error, 

or report of a successful recovery that occurs at the 

recorded time on the monitored machine. Therefore, 

the logs can be divided into an ensemble of recovery 

processes. The processes start with the advent of a new 

error, experience a series of repair actions, and end 

with successful recovery. Table 1 gives an example of 

recovery process.  

After noise filtering, we get 97 error types from the 

recovery log with the error type inference method men-

tioned in Section 3.1. To guarantee enough training 

data, we choose the 40 most frequent error types, 

which constitute 98.68% of the total recovery 

processes.  

 
Figure 5: Count of 40 most frequent error 
types 

Figure 5 shows the count of the selected error types. 

The remaining error types, since they are much less 

frequent, still need more time to accumulate enough 

training samples by monitoring the real system. The 

total downtime of each error type in the recovery 

processes controlled by the user-defined policy is given 

in Figure 6.  

 
Figure 6: Total downtime of 40 most frequent 
error types under user-defined policy 
 

4.2. Simulation platform 
 

Our simulation platform is built to compute time 

cost for a repair action on a state based on the assump-

tions mentioned in Section 3.3 and the recovery log.  

To verify our assumptions and the settings of the 

simulation platform, we run the platform under the 

user-defined recovery policy of the real system. Be-
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cause we could not refer to all the information consi-

dered by the user-defined policy from the log, we 

could only expect an approximate result. Figure 7 

shows the results for the 40 most frequent error types. 

The relative time cost here is the ratio of the estimated 

time cost compared to the real one for each error type, 

which is also used as the evaluation measure in the 

following experiments. 

 
Figure 7: Relative cost for 40 most frequent 
errors compared to real ones. Biggest devia-
tion is less than 5%.  

We can see that the time costs computed by the si-

mulation platform are close to the real ones and only 

one computed cost (error type 29) is slightly less than 

the real one. Therefore, by using this platform we can 

expect a conservative evaluation for most cases and 

thus make a fair comparison between the trained policy 

and the original policy. 

 

5. Experimental results 
 

In this section, we first evaluate the policy original-

ly trained by RL, then the performance of the hybrid 

approach. In each experiment we will apply the learn-

ing algorithm to a portion of the log to train a policy, 

and then test the performance of the policy on the re-

maining log. The training set and the test set are di-

vided according to time order. We choose 20%, 40%, 

60% and 80% of the recovery log for used in the train-

ing, thus forming four tests (test 1, test 2, test 3, and 

test 4).  

 

5.1. Results of RL-trained policy 
 

Figure 8 shows the fractions of the estimated time 

cost of the trained policy with respect to the actual time 

cost for each error type. The time cost of the unhandled 

cases is not counted in the total cost.  

In Figure 8, the four plots show the results of the 

four policies trained with 20, 40, 60 and 80 percent of 

the whole log. For most error types, the trained policy 

performs almost the same as the original policy. 

Through our observation of the corresponding recovery 

log, we find that the original policy has already 

achieved good enough recovery steps. This is hard to 

optimize any more based only on the existing log. On 

the other hand, we find that for some error types such 

as 1, 35, and 39, the trained policy gains a significant 

improvement over the original policy, reducing the 

cost to nearly half. When looking at the policy more 

closely, we find that the trained policy for most error 

types is nearly the same as the original one. The devia-

tion of the time cost for some error types (e.g. 6, 10, 

and 23) comes from simulation error (see Section 3.1). 

For error type 1, 35, and 39, the trained policy will try 

a stronger repair action at the beginning instead of the 

weakest one as done by the original policy. Since the 

stronger action is more effective in recovering the sys-

tem from the error, it gains a big savings in recovery 

time without trying the weaker actions first and waiting 

to find out that they do not work.  

 
Figure 8: Relative time cost for trained policy 
compared to real one  

The overall absolute time cost for the different test 

sets is shown in Figure 9. We can see that the trained 

policy can always gain over 10% time savings in the 

four tests. In particular, the policy trained from 40% of 

the log results in only 89.02% of the original downtime 

on the remaining log. Here, we only summarize the 

total time cost of the cases that could be handled by our 

trained policy. Since some unhandled cases exist that 

will be discussed in the next paragraph, the total time 

cost is a little less than the following experiment. 

 
Figure 9: Total time cost of trained policy un-
der different tests  
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Finally, we present the coverage of the trained poli-

cy in Figure 10, that is, the percentage of the errors it 

can handle. For each test, only a small number of error 

types cannot be handled and even in these cases the 

coverage is still more than 90%. Besides, the unhan-

dled cases decrease dramatically with the more training 

data used. 

 

Figure 10: Coverage of the trained policy. 
 

5.2. Results of hybrid approach 
 

To solve the noisy cases not covered by the RL-

trained policy, we combine it with the original user-

defined defined policy. Figure 11 shows two results 

comparing the pure RL approach and the hybrid ap-

proach. 

 
(a) Training set proportion = 0.2 

 
(b) Training set proportion = 0.4 

Figure 11: Performance comparison between 
trained policy and hybrid policy  

For the policy trained with 20% of the log, the per-

formance of the hybrid approach is almost the same as 

the RL-trained policy except for several exceptions, 

such as error type 23 (Figure 11(a)). However, when 

we take a closer look at the training data of error type 

23, we find that some new patterns that appear in the 

test set are not covered by the training set, so the 

trained policy is suboptimal and may not perform stab-

ly. As the size of the training data increases, more pre-

cise policy is generated and the hybrid approach per-

forms nearly the same as the trained policy, as pre-

sented in Figure 11(b). 

 
Figure 12: Total time cost of hybrid approach 
under different tests  

Figure 12 summarizes the total cost for the original 

user-defined policy and the hybrid policy. Like the 

trained policy, the hybrid policy can also achieve more 

than 10% improvement over the original policy, on 

average. Corresponding to the policy trained with 40% 

of the log, the hybrid approach only costs 89.18% of 

the original downtime. 

 
5.3. Learning rate experience  
 

In this section, we introduce our effort in improving 

the learning process to shorten the training time. To 

this end, we use a technique called selection tree in the 

learning process. To build the selection tree, we con-

sider the best two repair actions each time when gene-

rating the policy from the Q values. If the expected 

total cost of the second best action is close enough 

(based on a threshold) to that of the best one, we will 

choose both actions as candidates. Otherwise we will 

only choose the best one. Then, the selection tree can 

be built by iteratively putting these candidate actions as 

the children of the previous repair action, and the op-

timal policy can be generated by scanning the tree. 

Figure 13 shows the training time of this method (with 

selection tree) compared to the standard RL training 

course (without selection tree) with a maximum of 160 

thousand sweeps (training set proportion = 0.4).  
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Figure 13: Training time comparison. Vertical 
axis stands for sweep number before conver-
gence of training process for each error type.  

Moreover, the performance of the policies trained by 

these two methods is shown in Figure 14. We can find 

that, using standard RL method, some training courses 

do not converge to the optimal policies even after 160 

thousand sweeps. In contrast, with a selection tree, we 

can speed up the learning rate and successfully find the 

optimal policy within 40 thousand sweeps in our expe-

riment. 

 
Figure 14: Performance comparison between 
optimized training method and standard me-
thod  
 

6. Related work 
 

Gray’s classic text on failure analysis [14] surveys a 

range of failure statistics of a commercially available 

fault-tolerant system. He also discusses various ap-

proaches to software fault-tolerance, which mainly 

focus on how to prevent the occurrence of failures or 

reduce their frequency.  

More recent work attempted to employ statistical 

learning techniques in automated fault diagnosis and 

performance management. An early work by Ma and 

Hellerstein [19] presented an efficient algorithm to 

discover all infrequent Mutually Dependent Patterns 

(m-pattern) for system management, for example, iso-

lating problems in computer networks. Some statistical 

tools were developed for diagnosing configuration er-

rors that cause a system to function incorrectly. Whi-

taker et al. presented the Chronus tool [26], which au-

tomates the task of searching for a failure-inducing 

state change. A similar work was completed by Wang 

et al. [25]. They presented the PeerPressure trouble-

shooting system that uses statistics from a set of sam-

ple machines to diagnose misconfiguration on a sick 

machine. There are still many projects focusing on 

performance analysis and debugging or bottleneck de-

tection. Examples that include Magpie [2] and Pinpoint 

[9] make efforts to associate failures or performance 

problems with possible components via request traces. 

On failure diagnosis, Cohen et al. proposed to correlate 

the low-level system metrics with high-level perfor-

mance states using Tree-Augmented Naïve Bayesian 

networks [11]. Based on this work, they construct sig-

natures for clustering and retrieving, which could yield 

insights into the causes of observed performance ef-

fects and provide a way to leverage past diagnostic 

efforts [12][28]. Yuan et al. [27] proposed to correlate 

known faults to system behaviors with pattern classifi-

cation techniques so as to recognize future occurrences 

of the faults automatically. Compared to these research 

efforts, our approach focuses on automated error re-

covery instead of performance diagnosis. Recently, 

Tesauro et al. [24] completed a similar work that em-

ployed a hybrid reinforcement learning approach to 

performance management. 

In the area of error recovery, the common approach-

es rely on a priori knowledge from human experts to 

build policies for systems. Often, these repair actions 

can be expensive, causing nontrivial service disruption 

or downtime. Some recent research seeks to improve 

this method by introducing fine-grained recovery me-

chanisms. Microreboot [7], for example, provides a 

way for recovering faulty application components in an 

Internet auction system, without disturbing the rest of 

the application. We believe this work is complement to 

our work since we do not set any limitations on the set 

of repair actions. Additionally, with more potential 

repair actions, authoring or generating reasonable re-

covery policy will become evermore critical. 

 

7. Conclusion 
 

In this paper, we proposed a novel reinforcement 

learning approach to improve the framework of auto-

matic error recovery. Specifically, we focus on recov-

ery policy generation when a system model is not 

available, which we believe has not yet been fully stu-

died. We have investigated how to make proper deci-

sions on which repair actions to choose when the actual 

root cause is only localized at a coarse level. With our 

method, a locally optimal policy is guaranteed to be 

found, and it can adapt to changes in environment 
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without human involvement. Finally, experimental 

results on data from a real cluster environment show 

that automatically generated policy achieved more than 

10% savings in machine downtime on average. Several 

possible extensions of the approach include using ge-

neralization functions to approximate the Q-learning 

values, introducing more complicated relationships 

among actions, and designing initial policies that can 

be improved. In addition, we believe the approach pro-

vide greater benefits when we gain more information 

from event monitoring or fault detection. 
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