
 A Reinforcement Learning Approach to Automatic Error Recovery

Qijun Zhu Chun Yuan

 Artificial Intelligence Lab Microsoft Research Asia

 Tianjin University No.49, Zhichun Road

 Tianjin, China Beijing, China

 zhuqijun@tju.edu.cn cyuan@microsoft.com

Abstract

The increasing complexity of modern computer sys-

tems makes fault detection and localization prohibi-

tively expensive, and therefore fast recovery from fail-

ures is becoming more and more important. A signifi-

cant fraction of failures can be cured by executing spe-

cific repair actions, e.g. rebooting, even when the exact

root causes are unknown. However, designing reason-

able recovery policies to effectively schedule potential

repair actions could be difficult and error prone. In

this paper, we present a novel approach to automate

recovery policy generation with Reinforcement Learn-

ing techniques. Based on the recovery history of the

original user-defined policy, our method can learn a

new, locally optimal policy that outperforms the origi-

nal one. In our experimental work on data from a real

cluster environment, we found that the automatically

generated policy can save 10% of machine downtime.

1. Introduction

Maintaining high dependability has always been a

critical topic for computer systems. Doing so usually is

implemented in two ways: increasing reliability or

availability. Reliability characterizes the ability of a

system to perform services correctly, which can be

measured by the meantime between failures (MTBF).

Availability means that the system is available to per-

form services, which can be characterized by the mean-

time to repair (MTTR). Despite great improvements in

research and practice in software engineering, latent

bugs in complex software systems persist, and often it

is just too difficult to improve system reliability by

recognizing faults or fixing bugs. Actually, as the

complexity of the software systems increases dramati-

cally, analyzing system problems and finding root

causes has become costly and time-consuming work

even for skilled operators and diagnosticians [13][18].

Making computer systems more consistently available

is indeed practical and can increase effectiveness and

productivity.

Traditional fault tolerant techniques rely on some

form of redundancy to achieve high availability, which

can come in the form of function or data redundancy.

However, such methods usually sacrifice system per-

formance and can cause high hardware costs and in-

crease complexity. For example, process pairs [3] util-

ize good processors taking over the functionality of

failed processors in which non-stop processing is at the

cost of hardware redundancy and performance. Aura-

gen [4] also applies a similar scheme to the UNIX en-

vironment.

Another important way to achieve high availability

is through recovery schemes that restore systems to a

valid state after a failure. One of these recovery

schemes is based on check-pointing, which periodical-

ly creates a valid snapshot of a system’s state and, in

the case of a failure, returns the system to a valid state.

Often this method is system-specific and may create

great burdens on system designers and operators. Bak-

er et al. [1] utilized Recovery Box to realize quick re-

covery in which operating systems and application

programs need to use the interface provided by Recov-

ery Box to implement data insertion and retrieval.

Moreover, it is difficult to determine the right time to

create a checkpoint and ensure its validity.

A more popular recovery scheme is simple rebooting

technique, which can be applied at various levels and is

employed by many nontrivial systems today. Actually,

a significant fraction [5][10][14][22] of failures are

cured by simple recovery mechanisms such as reboot-

ing even when exact causes are unknown. Candea et al.

[6] built crash-only programs to crash safely and re-

cover quickly, and then improved this approach by

introducing a fine-grained mechanism called microre-

boot [7] which can provide better recovery perfor-

mance and cause less disruption or downtime.

However, to achieve efficient error recovery, poten-

tial repair actions need to be scheduled reasonably

based on policies like state-action rules. An example of

such policies includes recursively attempting the re-

maining cheapest action [7]. This simple policy may

not be sufficient in real environments because of im-

precise fault localization, recurring failures, or failed

repair actions [8]. The overall cost of cheap actions,

including the time for observing recovery effects, is

actually not that negligible either. Due to similar diffi-

culties in root cause analysis, as mentioned above, ge-

nerating recovery policies automatically could be im-

portant in effective error recovery. Joshi et al. [16][17]

attempt to tackle the problem with a model-based ap-

proach that enables automatic recovery in distributed

systems. Though their method works well in simulated

experiments, there are still problems. First, the method

needs detailed information on the system model, which

is often too complex to obtain for large-scale systems.

Second, it can locate faults well along the recovery

process, but may have difficulties in determining how

to deal with the faults since some faults may need the

combination of several actions to complete a recovery

in real systems.

In this paper, we also utilize application-independent

techniques to achieve automatic recovery. However,

we are focusing on recovery policy generation when

system models are not available. To the best of our

knowledge, this has not been fully studied before. We

have investigated how to make proper decisions on

which repair action to choose when the actual root

cause is only localized at a coarse level. Particularly,

we propose a novel approach based on reinforcement

learning (RL) to automatically find the locally optimal

policy, and show that it can achieve better recovery

performance. Another benefit of our learning-based

approach is that it can adapt to the change of the envi-

ronment without human involvement.

Our contributions are as follows:

1. An offline reinforcement learning method to au-

tomatically generate optimal recovery rules. We

should point out that the generated rules are local-

ly optimal since the learning is restricted by the

original, user-defined rules to be optimized.

2. A hybrid approach to handle noisy states that

cannot be cured by generated rules. The results

show that our approach cannot only maintain

nearly the same performance as using the gener-

ated rules in isolation, but also can cover all poss-

ible states.

3. A new type-oriented model of automatic error

recovery. Each rule corresponds to a potential er-

ror type induced from the recovery log.

4. Some experience in reducing rule-training time.

By using a selection tree, we can guarantee dis-

covery of optimal rules within much less time

than the standard RL process.

The rest of the paper is organized as follows. Sec-

tion 2 defines the automatic recovery problem and pro-

vides an overview of our approach. Section 3 gives

additional details on the training method, and presents

some assumptions based on how a reasonable evalua-

tion cab be conducted. Section 4 describes our experi-

mental data and evaluation framework. Section 5

presents experimental results. Section 6 discusses re-

lated work and Section 7 serves as our conclusion.

2. Overview

An automatic recovery framework typically consists

of three functions: event monitoring, fault detection,

and error recovery, as shown in the upper part of Fig-

ure 1. A recovery process may run like the following:

Event monitoring collects various information and

events for further analysis, such as symptoms of error

states corresponding to different faults that occur in the

target system. Then, fault detection recognizes failures

and informs error recovery so that it can decide which

repair action should be used based on the given recov-

ery policy and the failure information. The chosen ac-

tion is applied to the corresponding component and the

result of the recovery will be monitored, which may

lead to another round of recovery.

Figure 1: Automatic recovery framework.
Usually, recovery policies are user-defined by sys-

tem developers or operators. The issues with this ap-

proach are manifold. First, policies are often difficult

to build and evaluate for large-scale, complex systems

in which detailed system models may not always be

available or up to date. Second, an ideal policy should

be able to target each fault. However, due to the limita-

tion of fault localization, people often have to build

coarse-grained policies to cover all possible error

states. This sometimes may be too inaccurate to guar-

antee the desired result. Third, unanticipated errors and

varying symptoms may appear throughout the running

of systems, which requires policies evolve over time.

In our recovery framework we have two additional

offline components for automatically generating recov-

ery policies, as shown in the lower part of Figure 1.

Recovery log keep a history of error recovery via the

event monitoring component. Policy generation com-

ponents learn recovery policies from the recovery his-

tory with statistical induction techniques to instruct

error recovery. Specifically, we use reinforcement

learning to generate error type-oriented policies. Our

simulated experiments show that the policies learned

by our method outperform manual ones.

2.1. Problem formalization

If we consider the recovery process as selecting a

repair action according to current state and then getting

a reward (e.g. recovery time) after taking the action,

we can naturally formalize it as a sequential decision-

making process, or particularly a Markov decision

process (MDP) [15].

A Markov decision process can be represented as a

tuple ��, �, �, �, ���, where � is the set of possible error

states, each of which consists of some related features;

In particular, �� is all possible starting states; � is the

available repair actions; � is the state transition func-

tion, which decides the next state 	
�� based on the

current state 	
 and the selected action
; � is the cost

function, which determines the cost for executing an

action under an error state. In our experiments, we use

Meantime to Repair (MTTR) as the metric for evalua-

tion, so � is based on recovery time (downtime). There-

fore our goal is to minimize the expected cost �,

� � ��� ��	
 ,
�� �1�
�

��

that is, to achieve the shortest recovery time. We will

give more detailed explanation in Section 3.2.

2.2. Reinforcement learning and Q-learning

As further background of our method, we give a

brief introduction to reinforcement learning, an unsu-

pervised learning method for sequential decision mak-

ing. In this learning paradigm, the learning agent rece-

ives reinforcement (reward) after each action execu-

tion. The objective of learning is to construct a control

policy so as to minimize the discounted cumulative

reinforcement in the future or, for short, utility:

�
 � � ���
�� �2�
�

���

which is a generalized form of equation (1). � is the

discount factor. In this paper, we simply set it to 1.0 to

make sure the expected cost is equal to MTTR.

Q-learning is a widely used reinforcement learning

algorithm. The idea of Q-learning is to construct an

evaluation function called Q-function,

��	���, ���� � ! "��#��$

to predict the utility when the agent is executing some

action in certain state. Given an optimal Q-function

and a state 	, the optimal control policy is simply to

choose the action such that ��	, � is minimal over

all actions. Often the Q-function can be represented in

a generalized way like multi-layer neural networks and

incrementally learned through temporal difference

(TD) methods [23]. Given a sequence of state transi-

tions, the Q-function can be computed by iteratively

applying the learning procedure to each two successive

states along the sequence. Note that this procedure is

actually the simplest form of TD methods, %&�0� .

More details and discussions on Q-learning algorithm

can be found in standard machine learning textbooks or

related papers [20][21].

2.3. Automated policy generation

In this section, we will present the motivation for of-

fline training and a brief description of the policy gen-

eration process.

2.3.1. Offline training. There are a few issues in ap-

plying reinforcement learning to learn recovery poli-

cies online.

1. Before finding out the optimal policy, the RL

training process may explore many bad policies,

which, once applied, might seriously degrade

normal system performance.

2. The training process may start with an arbitrarily

bad policy.

3. The training process requires tens of thousands of

observations. For error recovery, several years

may be required to converge for infrequent errors.

To address these limitations, we devised an offline

training method that enables RL to take advantage of

user-defined policies. Although it is at the cost of miss-

ing the globally optimal policy and only producing the

locally optimal one, the obvious improvement it can

bring to original policies and the avoidance of online

training overhead still makes it a reasonable choice.

2.3.2. RL approach. We use the error types induced

from failure symptoms to approximate the real faults.

An induced error type represents the errors that share

the same symptoms, which ideally corresponds to a

unique fault, though different faults may be inferred as

the same error type. Specifically, we simply use the

error types and the previously tried actions to form the

states. The learning algorithm analyzes a real-world

recovery log generated by a user-defined policy and

computes the value of the Q-function ��	, �, which

satisfies the following equation

��	, � � ����	, �� (�)�	*|	, �,� -.��	*, *�
/.

, where 	* � ��	, � �3�

Here, the Q-function ��	, � stands for the minimal

time cost for state s beginning with action . The gen-

erated recovery policy may be restricted by two fac-

tors, the error types and the original recovery policy, so

it can only achieve local optimum.

3. Approach

This section gives details on the RL approach to au-

tomatic recovery policy generation, and discusses some

difficulties and our solutions.

function Q-learning

input

 Pr recovery processes (in the recovery log)

 Q initial Q-function values

return

 updated Q-function values

begin

// select one recovery process from Pr

p = SelectProcess(Pr)

// induce error type based on recovery process

t = InduceErrorType(p)

// build initial state

s = InitialState(t)

// explore different recovery actions

while(!Healthy(s)){

 a = SelectRecoveryAction(Q, s)

 c = UpdateState(Pr, s, a, s’)

 Record(s, a, c, s’)

 s = s’

}

// update Q-function values

for every two successive states s, s’ in record

 UpdateQfunction(Q, s, s’)

return Q

end

Figure 2: Q-learning algorithm for optimal pol-
icy generation

As stated in the previous section, we use Q-learning

algorithm to obtain repair policy. The training process

is implemented by applying Q-learning algorithm to

each error type, which can be inferred from error

symptoms in the recovery log. The procedure de-

scribed in Figure 2 is iteratively used on the recovery

log to get an optimal Q-function. In the following sec-

tions, we provide a closer look at each key step.

3.1. Error type inference and noise filtering

In this paper, we attempt to extract potential faults

based on the error symptoms in the recovery log.

To get a rough idea of how symptoms are distri-

buted, we generate a number of symptom sets from a

real-world recovery log (to be introduced in section

4.1). In each set, the symptoms are highly related based

on the ratio of the number of recovery processes in

which they appear together out of all the recovery

processes in which one symptom appears. Due to the

fact that some symptoms may occur quite infrequently,

we use m-pattern algorithm [19], which is capable of

finding infrequent but highly correlated items, to mine

mutually dependent symptoms in the log. The strength

of mutual dependence is measured by parameter minp.

We summarize the percentage of the recovery

processes with only highly dependent symptoms for

various dependence strength in Figure 3. We can ob-

serve that the whole log is mainly made up of a number

of highly cohesive symptom sets. Additionally, we find

different sets share few intersections. This motivates us

to generate policy at symptom level since we do not

have any knowledge about real faults. Actually, we

think the symptom sets may have strong correlation

with the faults in the system. Based on these observa-

tions, we define error type as the initial symptom of a

recovery process to approximate the real fault. For

example, if the sequence of symptoms occurring dur-

ing a recovery process is “A; B; C”, then we use symp-

tom “A” to represent its error type. We choose the ini-

tial symptom since it is usually representative enough

of the symptom set to which it belongs and the other

symptoms in the recovery process often co-occur with

it. Based on this definition, we employ the error type

as the unit in building recovery policies.

Figure 3: Symptom sets extracted from recov-
ery log

Moreover, we still need do some noise filtering

based on the above results because the evaluation is

based on a simulation platform in our experiments and

those noise data are often too difficult to simulate and

may impact the precision of the evaluation. Actually

we choose minp = 0.1 in m-pattern algorithm, and ul-

timately get 119 symptom clusters covering 96.67 % of

the total logs. The left 3.33% are regarded as noisy

cases that may contain more than one error. The noise

data only take up a trivial part within the logs, so the

filtering process does not influence the conclusions

much. Although our RL approach can also be applied

to these noisy cases, we still ignore them to get a pre-

cise evaluation.

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e

minp

Symptom Sets

3.2. State transition

We use error types (beginning symptoms) and pre-

viously tried repair actions to define states. A state 	
 is

represented by a tuple ��, 2, �3 , �, … ,
5� ��, where

� is error type, 2 is the recovery result (failure or

health) before time �, and 6, � � 0, 1, … , � 7 1, are all

repair actions executed before. From this definition, it

is obvious that before the last repair action the recovery

result 2 of any state will be 8 (failure) and after that it

will become 9 (health). This definition also makes au-

tomatic error recovery a Markov decision process.

Transition function, �, here is partially known, since

the state 	
�� produced by the acts on 	
 � ��, 8, ��,
�, … ,
5��� and
 could only be two types, 	
��

: �
��, 8, ��, �, … ,
5�,
�� or 	
��; � ��, 9, ��, �, … ,

5�,
�� , the probabilities of which depend on the

environment and properties of the errors. So the equa-

tion (3) could be rewritten as

��	
 ,
� � ����	
 ,
�� (<�	
 ,
� min-@AB
��	
��

: ,
���

,where 	
��
: � ��	
 ,
� �4�

Figure 4 illustrates the decisions and possible se-

quences in a recovery process after an error is detected.

0s
1

f
s

2

h
s

2

f
s 3

f
s

3

hs

0 0(,)q s a

0 01 (,)q s a−

1 1(,)f
q s a

1 11 (,)f
q s a−

2 2(,)fq s a

2 2

1 (,)fq s a−

1

h
s

0 0(,)Q s a

Figure 4: Error recovery process. The Q-
function D�E, F� is the expected time cost for
both two directions (failure or health).

We restrict the count of the repair actions to a finite

number N for each recovery process (in the experiment

we set N = 20). It means that if the preceding N-1 re-

pair actions fail to cure the problem, we will end the

process by requesting a manual repair (the recovery

action which is to be conducted by human). Since all

policies produced with this limitation are proper, ac-

cording to the theorem of value contraction in [14], our

RL method will converge with probability 1.

3.3. Explore strategy and table update

To explore different repair actions, we first need to

infer the state transitions based on the existing recov-

ery processes. This amounts to finding the correct re-

pair actions for each recovery process. The easiest me-

thod is to choose the last repair action as the correct

one. However, it may not always be safe to make such

assumptions and sometimes some stronger repair ac-

tions also play an important role in the recovery

process. A more realistic assumption is to regard both

the last action and other stronger actions as the correct

repair actions. Besides, since a stronger action includes

the processes of the weaker ones, it can at least cause

the same effect as the weaker ones. Based on this anal-

ysis, our hypotheses about the recovery process is as

follows:

1. For any successful recovery process, we need at

least the same correct repair actions (including the

last action and the stronger ones in the process) to

achieve the same recovery result.

2. Stronger actions can replace weaker ones in a

successful recovery process.

3. Recovery processes for different errors are inde-

pendent of each other.

With these hypotheses, we can carry out the explore

strategy and estimate the time cost for each possible

policy.

Starting from some initial states of recovery

processes, we have to explore a large enough state

space first and then find the optimal policy. We can

roughly divide the learning course into two phases, one

for exploration and the other for search. Like the simu-

lated annealing algorithm, we use a temperature % to

control the learning course from exploration to search.

Actually, at time � for certain error �, we will utilize

the following probability distribution (Boltzmann dis-

tribution) to select a repair action stochastically,

)�6|	
� � �5G�/@,-H�
I

∑ �5G�/@,-H�
IK

, 6 L � �5�

Here, the temperature % will decrease with more and

more recovery processes analyzed, so the repair action

will eventually be selected completely based on Q val-

ues, thus generating the policy.

 When a repair action is selected, its time cost will be

estimated based on the recovery log. Specifically, one

of the following values will be chosen: actual time cost

in the recovery process average success time cost, or

average failing time cost. Based on these values, we

can further update the Q-function and reasonably eva-

luate the policy. As we show in Section 4.2, this ap-

proach works well in our experiments.

Another important step in the whole training course

is how to update the Q values. In our method, we chose

to use a table look-up representation of the Q-function

and update the Q values based on the following equa-

tion,

 �N�	, � O �1 7 PN��N5��	, �
(PN Q��	, � (min-. �N5��	*, *�R

and, PN � �
S6/6
/T�/,-� �6�

where ��	, � records the expected value of the Q-

function, and ��	��	�	, � represents how many times

�	, � pair is explored. It is easy to prove that this up-

dating method is contracted and Q values will even-

tually converge to the optimal ones [20].

3.4. Hybrid approach

Occasionally, the RL-trained policy might fail to re-

pair some exceptional error cases. To get beyond this

issue, we provide a hybrid approach that combines the

trained policy with the user-defined one. In particular,

if an error still exists after the last action selected ac-

cording to the trained policy, we will automatically

revert to the user-defined policy. Since these noisy

cases do not happen frequently, the hybrid policy can-

not only guarantee to repair all errors as well as the

user-defined policy does, but also can maintain the

advantage of automatic policy generation with RL, as

we show in Section 5.2.

4. Experimental setup

This section introduces the data used in our experi-

ments and the simulation platform that outputs feed-

back of a repair action on a state -based on the hypo-

theses.

4.1. Experimental data

Our experimental data are based on the recovery log

collected from a large-scale cluster system with thou-

sands of servers that contained more than 2 million

entries of error symptoms and repair actions over near-

ly half a year of operations. The recovery policy used

in the real system is user-defined, which mainly tries

the cheapest action enabled by the state. There are four

actions for repairing a machine: TRYNOP (simply

watch and do not try any operation), REBOOT, REI-

MAGE (rebuild the operating system), and RMA (let

human repair).

Table 1: Example of recovery process (ma-
chine name is omitted).

Time Description (details omitted)

3:07:12 am error:IFM-ISNWatchdog: …

3:10:58 am errorHardware:EventLog: ...

3:23:26 am TRYNOP

3:25:37 am errorHardware:EventLog: ...

3:27:34 am errorHardware:EventLog: ...

3:42:10 am REBOOT

4:13:07 am Success

The log entries can be represented in the format of

<time, machine name, description>, in which the de-

scription can be the repair action, symptom of an error,

or report of a successful recovery that occurs at the

recorded time on the monitored machine. Therefore,

the logs can be divided into an ensemble of recovery

processes. The processes start with the advent of a new

error, experience a series of repair actions, and end

with successful recovery. Table 1 gives an example of

recovery process.

After noise filtering, we get 97 error types from the

recovery log with the error type inference method men-

tioned in Section 3.1. To guarantee enough training

data, we choose the 40 most frequent error types,

which constitute 98.68% of the total recovery

processes.

Figure 5: Count of 40 most frequent error
types

Figure 5 shows the count of the selected error types.

The remaining error types, since they are much less

frequent, still need more time to accumulate enough

training samples by monitoring the real system. The

total downtime of each error type in the recovery

processes controlled by the user-defined policy is given

in Figure 6.

Figure 6: Total downtime of 40 most frequent
error types under user-defined policy

4.2. Simulation platform

Our simulation platform is built to compute time

cost for a repair action on a state based on the assump-

tions mentioned in Section 3.3 and the recovery log.

To verify our assumptions and the settings of the

simulation platform, we run the platform under the

user-defined recovery policy of the real system. Be-

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 111315171921232527293133353739
C

o
u
n
t

Error type

Count

1

10

100

1000

10000

100000

1000000

10000000

1 3 5 7 9 111315171921232527293133353739

T
im

e
 C

o
s
t
(s

e
c
.)

Error type

Real Time Cost

cause we could not refer to all the information consi-

dered by the user-defined policy from the log, we

could only expect an approximate result. Figure 7

shows the results for the 40 most frequent error types.

The relative time cost here is the ratio of the estimated

time cost compared to the real one for each error type,

which is also used as the evaluation measure in the

following experiments.

Figure 7: Relative cost for 40 most frequent
errors compared to real ones. Biggest devia-
tion is less than 5%.

We can see that the time costs computed by the si-

mulation platform are close to the real ones and only

one computed cost (error type 29) is slightly less than

the real one. Therefore, by using this platform we can

expect a conservative evaluation for most cases and

thus make a fair comparison between the trained policy

and the original policy.

5. Experimental results

In this section, we first evaluate the policy original-

ly trained by RL, then the performance of the hybrid

approach. In each experiment we will apply the learn-

ing algorithm to a portion of the log to train a policy,

and then test the performance of the policy on the re-

maining log. The training set and the test set are di-

vided according to time order. We choose 20%, 40%,

60% and 80% of the recovery log for used in the train-

ing, thus forming four tests (test 1, test 2, test 3, and

test 4).

5.1. Results of RL-trained policy

Figure 8 shows the fractions of the estimated time

cost of the trained policy with respect to the actual time

cost for each error type. The time cost of the unhandled

cases is not counted in the total cost.

In Figure 8, the four plots show the results of the

four policies trained with 20, 40, 60 and 80 percent of

the whole log. For most error types, the trained policy

performs almost the same as the original policy.

Through our observation of the corresponding recovery

log, we find that the original policy has already

achieved good enough recovery steps. This is hard to

optimize any more based only on the existing log. On

the other hand, we find that for some error types such

as 1, 35, and 39, the trained policy gains a significant

improvement over the original policy, reducing the

cost to nearly half. When looking at the policy more

closely, we find that the trained policy for most error

types is nearly the same as the original one. The devia-

tion of the time cost for some error types (e.g. 6, 10,

and 23) comes from simulation error (see Section 3.1).

For error type 1, 35, and 39, the trained policy will try

a stronger repair action at the beginning instead of the

weakest one as done by the original policy. Since the

stronger action is more effective in recovering the sys-

tem from the error, it gains a big savings in recovery

time without trying the weaker actions first and waiting

to find out that they do not work.

Figure 8: Relative time cost for trained policy
compared to real one

The overall absolute time cost for the different test

sets is shown in Figure 9. We can see that the trained

policy can always gain over 10% time savings in the

four tests. In particular, the policy trained from 40% of

the log results in only 89.02% of the original downtime

on the remaining log. Here, we only summarize the

total time cost of the cases that could be handled by our

trained policy. Since some unhandled cases exist that

will be discussed in the next paragraph, the total time

cost is a little less than the following experiment.

Figure 9: Total time cost of trained policy un-
der different tests

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1 3 5 7 9 111315171921232527293133353739

R
e
la

ti
v
e
 t
im

e
 c

o
s
t

Error type

Estimated Time Cost

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 111315171921232527293133353739

R
e
la

ti
v
e
 t
im

e
 c

o
s
t

Error type

0.2
0.4
0.6
0.8

0

5

10

15

20

25

30

35

1 2 3 4

T
o
ta

l t
im

e
 c

o
s
t
(M

ill
io

n
 s

e
c
.)

Test number

User-defined policy

Trained policy

Finally, we present the coverage of the trained poli-

cy in Figure 10, that is, the percentage of the errors it

can handle. For each test, only a small number of error

types cannot be handled and even in these cases the

coverage is still more than 90%. Besides, the unhan-

dled cases decrease dramatically with the more training

data used.

Figure 10: Coverage of the trained policy.

5.2. Results of hybrid approach

To solve the noisy cases not covered by the RL-

trained policy, we combine it with the original user-

defined defined policy. Figure 11 shows two results

comparing the pure RL approach and the hybrid ap-

proach.

(a) Training set proportion = 0.2

(b) Training set proportion = 0.4

Figure 11: Performance comparison between
trained policy and hybrid policy

For the policy trained with 20% of the log, the per-

formance of the hybrid approach is almost the same as

the RL-trained policy except for several exceptions,

such as error type 23 (Figure 11(a)). However, when

we take a closer look at the training data of error type

23, we find that some new patterns that appear in the

test set are not covered by the training set, so the

trained policy is suboptimal and may not perform stab-

ly. As the size of the training data increases, more pre-

cise policy is generated and the hybrid approach per-

forms nearly the same as the trained policy, as pre-

sented in Figure 11(b).

Figure 12: Total time cost of hybrid approach
under different tests

Figure 12 summarizes the total cost for the original

user-defined policy and the hybrid policy. Like the

trained policy, the hybrid policy can also achieve more

than 10% improvement over the original policy, on

average. Corresponding to the policy trained with 40%

of the log, the hybrid approach only costs 89.18% of

the original downtime.

5.3. Learning rate experience

In this section, we introduce our effort in improving

the learning process to shorten the training time. To

this end, we use a technique called selection tree in the

learning process. To build the selection tree, we con-

sider the best two repair actions each time when gene-

rating the policy from the Q values. If the expected

total cost of the second best action is close enough

(based on a threshold) to that of the best one, we will

choose both actions as candidates. Otherwise we will

only choose the best one. Then, the selection tree can

be built by iteratively putting these candidate actions as

the children of the previous repair action, and the op-

timal policy can be generated by scanning the tree.

Figure 13 shows the training time of this method (with

selection tree) compared to the standard RL training

course (without selection tree) with a maximum of 160

thousand sweeps (training set proportion = 0.4).

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1 3 5 7 9 111315171921232527293133353739

C
o
v
e
ra

g
e
 r

a
te

Error type

0.2
0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 3 5 7 9 111315171921232527293133353739

R
e
la

ti
v
e
 t
im

e
 c

o
s
t

Error type

Trained policy

Hybrid policy

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 111315171921232527293133353739

R
e
la

ti
v
e
 t
im

e
 c

o
s
t

Error type

Trained policy

Hybrid policy

0

5

10

15

20

25

30

35

1 2 3 4

T
o
ta

l t
im

e
 c

o
s
t
(M

ill
io

n
 s

e
c
.)

Test number

User-defined policy

Hybrid policy

Figure 13: Training time comparison. Vertical
axis stands for sweep number before conver-
gence of training process for each error type.

Moreover, the performance of the policies trained by

these two methods is shown in Figure 14. We can find

that, using standard RL method, some training courses

do not converge to the optimal policies even after 160

thousand sweeps. In contrast, with a selection tree, we

can speed up the learning rate and successfully find the

optimal policy within 40 thousand sweeps in our expe-

riment.

Figure 14: Performance comparison between
optimized training method and standard me-
thod

6. Related work

Gray’s classic text on failure analysis [14] surveys a

range of failure statistics of a commercially available

fault-tolerant system. He also discusses various ap-

proaches to software fault-tolerance, which mainly

focus on how to prevent the occurrence of failures or

reduce their frequency.

More recent work attempted to employ statistical

learning techniques in automated fault diagnosis and

performance management. An early work by Ma and

Hellerstein [19] presented an efficient algorithm to

discover all infrequent Mutually Dependent Patterns

(m-pattern) for system management, for example, iso-

lating problems in computer networks. Some statistical

tools were developed for diagnosing configuration er-

rors that cause a system to function incorrectly. Whi-

taker et al. presented the Chronus tool [26], which au-

tomates the task of searching for a failure-inducing

state change. A similar work was completed by Wang

et al. [25]. They presented the PeerPressure trouble-

shooting system that uses statistics from a set of sam-

ple machines to diagnose misconfiguration on a sick

machine. There are still many projects focusing on

performance analysis and debugging or bottleneck de-

tection. Examples that include Magpie [2] and Pinpoint

[9] make efforts to associate failures or performance

problems with possible components via request traces.

On failure diagnosis, Cohen et al. proposed to correlate

the low-level system metrics with high-level perfor-

mance states using Tree-Augmented Naïve Bayesian

networks [11]. Based on this work, they construct sig-

natures for clustering and retrieving, which could yield

insights into the causes of observed performance ef-

fects and provide a way to leverage past diagnostic

efforts [12][28]. Yuan et al. [27] proposed to correlate

known faults to system behaviors with pattern classifi-

cation techniques so as to recognize future occurrences

of the faults automatically. Compared to these research

efforts, our approach focuses on automated error re-

covery instead of performance diagnosis. Recently,

Tesauro et al. [24] completed a similar work that em-

ployed a hybrid reinforcement learning approach to

performance management.

In the area of error recovery, the common approach-

es rely on a priori knowledge from human experts to

build policies for systems. Often, these repair actions

can be expensive, causing nontrivial service disruption

or downtime. Some recent research seeks to improve

this method by introducing fine-grained recovery me-

chanisms. Microreboot [7], for example, provides a

way for recovering faulty application components in an

Internet auction system, without disturbing the rest of

the application. We believe this work is complement to

our work since we do not set any limitations on the set

of repair actions. Additionally, with more potential

repair actions, authoring or generating reasonable re-

covery policy will become evermore critical.

7. Conclusion

In this paper, we proposed a novel reinforcement

learning approach to improve the framework of auto-

matic error recovery. Specifically, we focus on recov-

ery policy generation when a system model is not

available, which we believe has not yet been fully stu-

died. We have investigated how to make proper deci-

sions on which repair actions to choose when the actual

root cause is only localized at a coarse level. With our

method, a locally optimal policy is guaranteed to be

found, and it can adapt to changes in environment

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 111315171921232527293133353739

#
 o

f
s
w

e
e
p
s

Error type

With selection tree

Without selection tree

0

0.5

1

1.5

2

2.5

1 3 5 7 9 1113 15 1719 2123 2527 29 3133 3537 39

R
e
la

ti
v
e
 t
im

e
 c

o
s
t

Error type

With selection tree

Without selection tree

without human involvement. Finally, experimental

results on data from a real cluster environment show

that automatically generated policy achieved more than

10% savings in machine downtime on average. Several

possible extensions of the approach include using ge-

neralization functions to approximate the Q-learning

values, introducing more complicated relationships

among actions, and designing initial policies that can

be improved. In addition, we believe the approach pro-

vide greater benefits when we gain more information

from event monitoring or fault detection.

8. Acknowledgments

We would like to thank Ken Cao, Peirong Liu and

Yi Li for clarifying the details of the user-defined poli-

cy and the recovery log. We also thank the anonymous

reviewers for their helpful comments and Dwight Da-

niels for proofreading the paper.

References

[1] M. Baker and M. Sullivan. The Recovery Box: Using

fast recovery to provide high availability in the UNIX

environment. In Proc. Summer USENIX Technical

Conference, San Antonio, TX, 1992

[2] P. Barham, A. Donnelly, R. Isaacs and R. Mortier. Us-

ing Magpie for request extraction and workload model-

ing. In Proc. 6th Symposium on Operating Systems

Design and Implementation (OSDI), Dec. 2004.

[3] J.F. Bartlett. A NonStop kernel. In Proc. 8th ACM

Symposium on Operating Systems Principles, Pacific

Grove, CA, 1981.

[4] A. Borg, W. Blau, W. Graetsch, F. Herrman and W.

Oberle. Fault Tolerance under UNIX. ACM Transac-

tions on Computer Systems, 7(1): 1–24, Feb 1989.

[5] E. Brewer. Lessons from giant-scale services. IEEE In-

ternet Computing, 5(4):46–55, July 2001.

[6] G. Candea and A. Fox. Crash-only software. In Proc.

9th Workshop on Hot Topics in Operating Systems,

Lihue, Hawaii, 2003.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman and

A. Fox. Microreboot – A Technique for Cheap Recov-

ery. In Proc. 6th Symposium on Operating Systems

Design and Implementation (OSDI), Dec 2004.

[8] G. Candea, E. Kiciman, S. Kawamoto and A. Fox, Au-

tonomous Recovery in Componentized Internet Appli-

cations. Cluster Computing Journal, 9(1), Feb 2006

[9] M. Chen, E. Kiciman, E. Fratkin, A. Fox and E. Brew-

er. Pinpoint: Problem determination in large, dynamic

systems. In Proc. 2002 Intl. Conf. on Dependable Sys-

tems and Networks, Washington, DC, June 2002.

[10] T.C. Chou. Beyond fault tolerance. IEEE Computer,

30(4):31–36, 1997.

[11] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons and J.S.

Chase. Correlating instrumentation data to system

states: A building block for automated diagnosis and

control. In Proc. 6th Symposium on Operating Systems

Design and Implementation, Dec. 2004.

[12] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T.

Kelly and A. Fox. Capturing, Indexing, Clustering, and

Retrieving System History. In Proceedings of the ACM

Symposium on Operating Systems Principles (SOSP),

Oct. 2005.

[13] A. Fox and D. Patterson. Self-repairing computers.

Scientific American, June 2003.

[14] J. Gray. Why Do Computers Stop and What Can Be

Done About It? 6th International Conference on Relia-

bility and Distributed Databases, June 1987.

[15] G.J. Gordon. Stable Function Approximation in Dy-

namic Programming, tech report CMU-CS-95-103,

1995.

[16] K.R. Joshi, W.H. Sanders, M.A. Hiltunen and R.D.

Schlichting. Automatic Model-Driven Recovery in

Distributed Systems. SRDS 2005: 25-38

[17] K.R. Joshi, W.H. Sanders, M.A. Hiltunen and R.D.

Schlichting. Automatic Recovery Using Bounded Par-

tially Observable Markov Decision Processes. In Proc.

of the 2006 International Conference on Dependable

Systems and Networks (DSN’06): 445-456

[18] J.O. Kephart and D.M. Chess. The vision of autonomic

computing. Computer, 36(1):41–50, 2003.

[19] S. Ma and J.L. Hellerstein. Mining Mutually Depen-

dent Patterns for System Management. IEEE Journal

on Selected Areas in Communications, VOL. 20, NO.

4, May 2002.

[20] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[21] S.A. Murphy. A Generalization Error for Q-Learning.

Journal of Machine Learning Research, 6 (2005) 1073–

1097.

[22] B. Murphy and T. Gent. Measuring system and soft-

ware reliability using an automated data collection

process. Quality and Reliability Engineering Intl.,

11:341–353, 1995.

[23] R.S. Sutton. Learning to Predict by the Methods of

Temporal Differences. Machine Learning 3: 9-44,

1988.

[24] G. Tesauro, R. Das and N. Jong. Online Performance

Management Using Hybrid Reinforcement Learning.

First Workshop on Tackling Computer Systems Prob-

lems with Machine Learning Techniques (SysML’06),

June 2006.

[25] H.J. Wang, J.C. Platt, Y. Chen, R. Zhang and Y.M.

Wang. Automatic Misconfiguration Troubleshooting

with PeerPressure. In Proc. 6th Symposium on Operat-

ing Systems Design and Implementation, Dec. 2004.

[26] A. Whitaker, R.S. Cox and S.D. Gribble. Configuration

Debugging as Search: Finding the Needle in the Hays-

tack. In Proc. 6th Symposium on Operating Systems

Design and Implementation, Dec. 2004.

[27] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M.

Wang and W.-Y. Ma. Automated Known Problem Di-

agnosis with Event Traces. 1st EuroSys Conference,

April 2006

[28] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons and A.

Fox. Ensembles of Models for Automated Diagnosis of

System Performance Problems. In Proc. of the 2005 In-

ternational Conference on Dependable Systems and

Networks (DSN’05).

