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ABSTRACT 
Computer problem diagnosis remains a serious challenge to 
users and support professionals. Traditional troubleshooting 
methods relying heavily on human intervention make the 
process inefficient and the results inaccurate even for solved 
problems, which contribute significantly to user’s dissatis-
faction. We propose to use system behavior information 
such as system event traces to build correlations with solved 
problems, instead of using only vague text descriptions as in 
existing practices. The goal is to enable automatic identifi-
cation of the root cause of a problem if it is a known one, 
which would further lead to its resolution. By applying sta-
tistical learning techniques to classifying system call se-
quences, we show our approach can achieve considerable 
accuracy of root cause recognition by studying four case 
examples. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
diagnostics, tracing 

General Terms 
Algorithms, Measurement, Experimentation 

Keywords 
System call sequences, root cause analysis, support vector machine 

1. INTRODUCTION 
With the increasing complexity of modern computer sys-
tems, problem diagnosis has become a major challenge for 
users and support engineers. A typical process of problem 
diagnosis is seemingly simple: A human or machine trou-
bleshooter first provides a description of the problem that 
has happened, then some sort of analysis is performed and 
the root cause of the problem is identified, and finally a 
remedy is applied to solve the problem. In short, the para-
digm of problem diagnosis is: 

Problem description ���� root cause ���� solution 

In general, the “root cause ���� solution” pairs can be ob-
tained from past problem-solving experiences. These la-
beled pairs can be called “known problem”. In such cases, 
the problem diagnosis paradigm can be transformed to: 

Problem description ���� known problem 

We intend to use the simplified paradigm to automate the 
process of problem diagnosis, leveraging past problem-
solving knowledge to train classifiers for automatic identifi-
cation of the root cause of a problem. Let us first take a look 
at the following example: 

Example – “The page cannot be displayed” problem in 
Windows Internet Explorer (IE): when the computer has a 
network connection or setting error, the “The page cannot 
be displayed” error message will be prompted to the user. 
Through analyzing the problem-solving logs of a technical 
support center, we identified the top 10 possible root causes 
for this problem: 

1. BadIP: IP address is invalid 
2. BadPort: the specified server port is invalid 
3. BadProxy: the HTTP proxy is invalid 
4. BadProxyPort: the HTTP proxy port is invalid 
5. Disable: the network connection is disabled 
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6. NoDriver: the driver of the network adapter is not in-
stalled 

7. NoPage: the page visited does not exist on the server 
8. NoProtocol: the TCP/IP protocol is not enabled 
9. Unplug: the network cable is unplugged 
10. WinSock2: WinSock2 registry key is corrupted 

This is a very typical problem that needs significant efforts 
for troubleshooting because for the same symptom “The 
page cannot be displayed”, there are at least 10 possible root 
causes. Moreover, the root causes may come from diverse 
sources. For instance, in the above listed 10 root causes, 
three of them are related to TCP/IP, three related to HTTP, 
two related to network driver, one related to registry, and 
another related to hardware.  

Currently, there are two kinds of mainstream problem diag-
nosis methodologies – text-based diagnosis and state-based 
diagnosis. Using the above example problem, we analyze 
the pros and cons of these two existing methodologies. 

Text-based diagnosis – Traditionally, the user finds solu-
tion by text-based search in past problem solution knowl-
edge base. A common experience is that the user summa-
rizes the symptom of a problem with her own words and 
then search through various data sources like company’s 
online support websites. Thus, the paradigm of text-based 
diagnosis could be viewed as: text symptom description ���� 
troubleshooting documents. 

The effectiveness of this approach is highly variable. Some-
times it is difficult for the user to describe the symptom. 
Furthermore, manual query is prone to ambiguity and inac-
curacy which would lead to inaccurate search results. Like 
the above example, frequently there are many root causes 
that could yield the same symptom, and they would have to 
be distinguished by hand. In summary, to manually com-
pose accurate problem descriptions is a difficult task for 
users or even professionals in most cases. Moreover, even if 
an accurate problem description could be made, the search 
results are a list of relevant or irrelevant documents due to 
the inherent inaccuracy of information retrieval techniques. 
For example, searching “The page cannot be displayed” will 
return thousands of results from a typical web search engine. 
It is still a very challenging task for users to figure out the 
real root cause and solution by browsing through the docu-
ments. As a result, text-based diagnosis greatly suffers from 
its inaccuracy and heavy human involvement, even though it 
is a straightforward method which has been used for a long 
time. 

State-based diagnosis – Low-level system state informa-
tion has been used extensively in program debugging and 
problem diagnosis since it can reveal more detailed context 
which might indicate the source of a problem. Many tools 
attempt to automate the fault diagnosis task using system 
states (such as [28][30]). These tools use some mechanisms 
to detect abnormal system states, and then relate the states to 

known problems. For example, to solve configuration prob-
lems [28] uses various techniques to narrow down the list of 
candidate root causes, including persistent state differencing, 
runtime tracing, intersection and statistical ranking. Then 
configuration roll-back [31] can be applied to fix the prob-
lem. The work in [30] further attempts to automatically find 
the good state to roll-back to. Thus, the general paradigm of 
state-based troubleshooting is: system state information ���� 
root cause or known problem. 

For state-based diagnosis, the whole diagnosis process is 
pretty automatic and requires no or very little human in-
volvement. Its accuracy is also good in the case that the ab-
normal state is correctly identified. In addition, since ab-
normal state is directly identified, some unknown problems 
could be detected and solved by this method. Despite these 
merits, state-based diagnosis methods have several inherent 
shortcomings. First, accurately isolating abnormal system 
states is usually non-trivial, considering that a modern com-
puter system contains so many kinds of states. Tools in [28] 
can only give a candidate set containing tens of “possible” 
abnormal states in the ideal cases. Second, in many cases, a 
state by itself cannot tell if it is normal or abnormal. For 
instance, a specific IP address could be normal in one ma-
chine and abnormal in another machine. Third, state-based 
diagnosis will not work when the root cause is not contained 
in the collected system states. If a state-based troubleshooter 
is designed to only collect registry related states, it can do 
nothing about those problems with file related root causes. 
While collecting as many kinds of states as possible can 
alleviate the problem, it is usually unrealistic to collect all or 
even most of the state information in a complex computer 
system. Therefore, the generality of this method is not satis-
factory. Fourth, most existing state-based diagnosis tools 
treat states separately and target to build a kind of direct 
mapping between single state and root cause or known prob-
lem. However, problems caused by multiple abnormal states 
cannot be dealt with by this strategy.  

In this paper, we propose a novel trace-based problem 
diagnosis methodology, which relies on the trace of low-
level system behaviors to deduce problems of computer 
systems. Behavior information is trails of various transient 
events occurring in the system, such as system calls, I/O 
requests, call stacks, context switches, etc. We intend to 
identify the correlations between system behaviors and 
known problems and then use the learned knowledge to 
solve new coming problems. Thus the new diagnosis para-
digm is: system behavior information ���� known problem.  

We study the effectiveness of this method with four exam-
ple cases. We find that with appropriate processing method 
and learning algorithm, the root cause of a problem can be 
identified at a considerable accuracy. Also, problems with 
various root cause sources could be correctly identified, 
even when the root causes are not contained in the traces. 
The result strongly supports that there does exist some asso-



 

 

ciation between low-level system behavior and high-level 
problem and the trace-based problem diagnosis is a promis-
ing troubleshooting method with good accuracy and gener-
ality. 

This paper is organized as follows. In Section 2 we describe 
the design of the automated diagnosis system. We introduce 
the event tracing component in Section 3 and describe the 
classifier we use to learn from system behavior and predict 
root cause in Section 4. In Section 5 we report our observa-
tions on system event traces which help us to design noise 
filtering and canonicalization rules. In Section 6 we evaluate 
this approach with four problems having diverse root causes. 
In Section 7 we discuss some questions about the method. 
We introduce related work in Section 8. 

2. SYSTEM DESIGN 
This section describes the design of the automatic trouble-
shooting system which diagnoses problems with event 
traces collected from user machines. The illustration of the 
system architecture is shown in Figure 1. 

The goal of the system is to minimize user involvement in 
problem diagnosis. When a user encounters a problem, for 
example Internet Explorer cannot display a Web page, she 
only needs to start the troubleshooter that handles the IE 
display problem. The steps follow are described below. 

 
(1) The troubleshooter will replay the IE browsing opera-

tion to reproduce the symptom.1 At the same time it 
will start the event tracer to collect the sequence of sys-
tem events that will be incurred. 

(2) Then the trace log is sent to the classifier. After some 
preprocessing and transformation, the classifier will 
analyze the input trace and identify the root cause based 
on its similarity with the previously collected and la-
beled traces. 

                                                 
1 The problems that can not be reliably reproduced are beyond the 
scope of the paper. 

(3) The root cause and the corresponding solution will be 
sent to the troubleshooter, which can present a report of 
repair instructions to the user or even fix the problem 
automatically. 

Step (4) is responsible for learning the classifier for root 
cause identification. With a database of known problems 
and their root causes (from the past accumulation of diagno-
sis knowledge), a number of event traces can be collected 
for them offline and labeled with the corresponding root 
causes. Then the classifier can learned from the event traces 
and build a prediction model, which is used to forecast the 
root causes of the traces submitted by end users. It is possi-
ble to leverage the user-submitted traces in the learning, 
which could save some data collection effort. 

Although the classifier can be continuously updated if de-
ployed on a support center, it can also (sometimes has to) 
reside on the user’s local machine with a pre-computed pre-
diction model for some frequent problems and networking 
issues. 

In the next two sections we will describe the two main com-
ponents – tracer and classifier – in detail. 

3. TRACER 
The tracer will log the sequence of events triggered in the 
system when the symptom of a problem is being reproduced. 
The sequence will serve as a representation of the problem 
and be delivered for analysis and recognition.  

There are many kinds of events in a running system and 
they can occur at various levels. A higher-level event can be 
an abstraction of some lower-level events. For example, an 
action on the application’s user interface could result in a 
series of function calls to a dynamic library, which might 
further ask for system services with system calls. The sys-
tem calls are finally realized by machine instructions. Trac-
ing events at these levels would require different implemen-
tation mechanisms and reveal different degrees of detail. 
Each level may need diverse effort in obtaining similar cov-
erage of system behavior. And the granularity of behavior 
characterization would change with the level of observation 
as well. A series of instructions would tell more about the 
dynamics in the machine than a function call to a library 
does. The side effect is that the variation of instruction se-
quences could also be more significant than function call 
sequences. Another factor we have considered is the seman-
tics of an event, because we may need to inspect the logged 
events in the development of the method and a function call 
is often more intuitive and meaningful for us to understand. 
Usually, the higher the tracing level is, the richer semantics 
an event would contain. 

Taking the trade-off between granularity and semantic rich-
ness into account, we choose to use system call as the type 
of events to monitor. Since system calls provide core system 
services and are frequently invoked, at this level most as-

Figure 1. Automatic troubleshooting system 
The dotted edge means the step can be done offline. 
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pects of application and system behavior would be covered 
at a considerable granularity. System calls also have clear 
semantics about the operating system and thus offer some 
extent of understandability. In addition it might be one of 
the most similar event types across popular operating sys-
tems, which would be helpful to extend our result to broader 
environments. There are also known techniques and tools 
for collecting system calls on various platforms. Therefore, 
we think it is a good starting point for our study. In the fu-
ture we plan to try some lower-level events like I/O requests 
(e.g. network packets) and higher-level events like function 
calls to various libraries or application-specific events ac-
tively generated by developers for the purpose of debugging. 
Simultaneously investigating events from multiple providers 
might be feasible as well. 

The current tracer collects most of the system calls on Win-
dows XP, which are relevant to various kernel objects like 
process, thread, registry, file, mutex, semaphore, event, 2 
section, access token as well as facilities like security, audit-
ing and local procedure call. It also traces some system calls 
about Win32 messaging, which constitutes the event-driven 
model of Windows. For each system call the tracer records 
the following attributes. 

� Sequence number 
� Process ID 
� Thread ID 
� Process name 
� Thread name 
� System call name 
� System call parameters 
� System call return value 

Sequence numbers denote the order of event occurrences. 
However, system calls are logged upon exit, so nested calls 
will appear before the caller. Since this always happens 
within a thread, the relative order remains deterministic. 

Process ID and thread ID are used to distinguish system 
calls from different tasks. Process name is the image name 
of the process making the system call. We use the start ad-
dress of the thread to resolve the thread name. Specifically, 
we figure out the module3 containing the thread start address 
according to the module layout of the process. Then the 
module name plus the offset relative to the module start 
address is regarded as the thread name. Process name and 
thread name are used to seriate the system calls of a trace 
session in a uniform way, as described in Section 5.1. 

System call parameters suggest more specific semantics 
about a system call. Where possible we always translate a 
parameter into a meaningful and session-independent form 
                                                 
2 Here event is a kind of kernel object for synchronization or noti-
fication between threads in Windows. Event has a more general 
sense elsewhere in the paper. 
3 In Windows a module is an executable file or dynamic link li-
brary. Each process contains one or more modules. 

so that it can be compared with each other reasonably. For 
example, kernel objects can be named and many system 
calls access kernel objects through handles, so a parameter 
referring to a kernel object handle will be logged as the ob-
ject name queried with the handle. 

The tracer is implemented as a kernel-mode driver relying 
on system call hooking techniques [22][25][19] to intercept 
the system calls. The logging of intercepted events is done 
through WPP Software Tracing [32] which is a low-
overhead mechanism for kernel-mode drivers to log real-
time messages. In our experience when the tracer is running 
on a typical modern machine there is no noticeable perform-
ance degradation for most operations. In addition event loss 
is always reported so we can avoid collecting incomplete 
traces.  

For the reason mentioned in Section 5.1, process/thread be-
ginning and end events are also logged along with system 
calls by the process/thread creation/deletion callback rou-
tines set by the tracer. 

The size of a trace log is highly variable, depending on the 
length of a session (reproduction) and the application. It can 
generate a log of about 10Mbytes (57K events) for a Web 
browsing action in Internet Explorer (a browsing button is 
pressed to the page is fully loaded). However, the current 
trace format is highly redundant and a compact representa-
tion can reduce the size by an order of magnitude (the above 
log file becomes about 0.7Mbytes after compression). Since 
trace size will largely determine the efficiency of storage, 
remote transfer, and analysis, it would be very important to 
have the option to cut down the amount of information to be 
logged without sacrificing accuracy. In the meantime, less 
information to log also means less runtime overhead in trac-
ing. We will discuss this issue in the evaluation part. 

4. CLASSIFIER 
The classifier is responsible for predicting the root cause 
(class) of a new trace (test data) based on the previous traces 
with known root causes (labeled training data). The key 
component of the classifier is feature representation, i.e. 
developing effective mathematical form of input data so that 
different classes can be accurately distinguished by a classi-
fication algorithm. We first introduce the n-gram model we 
use as feature representation of system call sequences and 
then give some background on the SVM classification algo-
rithm. 

4.1 N-gram Based Representation 
An n-gram is any N successive symbols from a symbol 
string. When N=1, it becomes the “bag of symbol” repre-
sentation. N-gram models were used early for natural lan-
guage understanding [26] and later text categorization [8]. 
They are simple and can construct features from sequential 
data while maintaining its sequential information. 



 

 

Given a set of system call sequences as training data, we 
first extract n-grams (features) of all sequences and each of 
them will represent a dimension of a high-dimensional vec-
tor space. Then for any system call sequence (either for test-
ing or training) we represent it as a feature vector of {0, 1} 
by setting 1 at a component of the vector if the correspond-
ing n-gram is contained in the sequence and setting 0 other-
wise. The bit vectors are ready to be used by a classification 
algorithm for learning and prediction. 

4.2 Classification by Support Vector Machines 
Support Vector Machines (SVM) is a pattern classification 
algorithm developed by V. Vapnik [27]. It solves two-class 
pattern recognition problems based on the Structural Risk 
Minimization principle. Given a training set in the feature 
space, this method finds the best decision hyperplane that 
separates the two classes, so that it gives the best expected 
generalization ability. It has been shown to perform well on 
high dimensional data sets with small sizes, which is an 
ideal property for the data types we are dealing with. 

Given a data set t
iii yD 1},{ == x  of labeled examples, where 

xi ∈ Rn (in our case the bit vectors), yi ∈ {-1,1}, we wish to 
select, among the infinite number of linear classifiers that 
separate the data, one that minimizes the generalization er-
ror, or at least an upper bound on it. Vapnik showed that the 
hyperplane with this property is the one that leaves the 
maximum margin between the two classes. Given a new 
data point x to classify, a label is assigned according to its 
relationship to the decision boundary (hyper-plane), and the 
corresponding decision function is: 
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From this equation it is possible to see that the αi associated 
with the training point xi expresses the strength with which 
that point is embedded in the final decision function. A re-
markable property of this alternative representation is that 
often only a subset of the points will be associated with non-
zero αi. These points are called support vectors and are the 
points that lie closest to the separating hyperplane. 

The nonlinear support vector machine maps the input vari-
able into a high dimensional (often infinite dimensional) 
space, and applies the linear support vector machine in the 
space. Computationally, this can be achieved by the applica-
tion of a (reproducing) kernel. The corresponding nonlinear 
decision function is: 
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where K is the kernel function. Some typical kernel func-
tions include polynomial kernel, Gaussian RBF kernel, and 
sigmoid kernel. For multi-class classification problem, one-
against-all scheme [14] can be used. 

We choose the widely used libSVM package [9] as the im-
plementation of the algorithm. LibSVM will learn a predic-
tion model from a specified training set and store it as a per-
sistent file which can be loaded by any new instance of the 
classifier. We use the linear SVM kernel in our experiment, 
because it is more robust than nonlinear kernel and does not 
need to tune any parameter. 

Though SVM is very efficient in learning on high-
dimensional data, the actual computational complexity 
would still rely on the dimension of the input data. For ex-
ample with the linear kernel the basic operation would be 
the inner product of two vectors. In practice we often need 
to reduce the dimension to make the classification task more 
efficient, for example applying the noise filtering rule de-
scribed in Section 5.2. 

A classifier is usually measured by its accuracy in predicting 
unknown data, i.e. the percentage of the correctly predicted 
data. We use the cross-validation procedure throughout our 
experiments to prevent overfitting on a limited data set. In a 
standard k-fold cross-validation we first divide the training 
data into k partitions and then repeat selecting one partition 
of data to test with the classifier trained from the remaining 
data until all data are tested. The cross-validation we use is a 
slight variation based on this for controlling the size of the 
training data. Then the accuracy of the classifier will be 
averaged over all folds of the cross-validation. 

5. NOISE FILTERING AND CANONICALI-
ZATION 
The section describes our observations on system behavior 
variation by comparing the system call sequences with se-
quence alignment. We designed some rules for noise filter-
ing and canonicalization based on these observations. 

Trace comparison is an important primitive for understand-
ing system behavior distinctions under different situations 
(such as times and machines of tracing, root causes of a 
problem) and hence for characterizing system behavior from 
multiple traces. 

We use sequence alignment [15] as a basic tool to compare 
traces. A sequence alignment algorithm tries to find the 
maximal similarity of two sequences. For example, Figure 2 
shows the alignment of two strings, where white spaces are 
inserted to allow noncontiguous matches. Without any 
knowledge of the application program, this would be a rea-
sonable method we can rely on for comparison. 

Original Aligned 
[abcefh] [abc ef h ] 
[bcdfghi] [ bcd fghi] 
Figure 2. Sequence alignment example 

To compare more sequences simultaneously, we use a sim-
plified multiple sequence alignment algorithm based on 
pair-wise alignment. Its time complexity only increases line-



 

 

arly with the number of sequences used, and the effect is 
close to the optimal alignment according to our datasets. 

However, raw traces are not suitable to be compared di-
rectly since irrelevant system calls may disturb alignment. 
For stable comparison, we attempt to identify and eliminate 
random effects as much as possible and serialize traces in a 
uniform manner before alignment. 

5.1 Uniform Ordering 
System calls from different threads can occur in random 
orders as a result of thread scheduling effect. Therefore, 
traces cannot be reasonably compared before they are reor-
dered in a uniform way. Thread interleaving effect can be 
handled by looking at thread ids of system calls. In case of 
two threads being assigned the same id in a trace session, 
we can tell them apart using the thread beginning and end 
events. Processes are separated in the same way. Thus, a 
trace can be divided into segments each of which represents 
the activity of a single unique thread. 

After segmentation, we sort the system calls by process 
name and thread name.4 Within each thread they are ordered 
by their sequence numbers. Processes/threads with the same 
name will be ordered by their first occurrence. The first oc-
currence of a process/thread is defined as the sequence 
number of the first captured system call of the proc-
ess/thread. This is suggested by the observation that it is 
very likely that such processes/threads occur in a non-
random order. 

With this ordering scheme the system calls generated by the 
instances of the same logical thread in different traces can 
be positioned in a way that reveals similarity of different 
traces as much as possible. 

5.2 System Call Variation 
Below we report our study on system behavior changes with 
different aspects of traces in terms of time and machine of 
trace collection. This study will help us to focus on the es-
sential parts in traces and design noise filtering and canoni-
calization rules. All the studies are based on the traces col-
lected for the same operation replayed on some normal ma-
chines. 

5.2.1 Cross-Time 
We first study how system behavior changes with time. The 
traces are first reformatted with the uniform ordering as 
introduced in Section 5.1. Then we watch for patterns of 
continuous system calls in different traces through trace 
comparison. Because the traces containing all kinds of sys-
tem calls are usually very long (10,000~100,000 calls), 
which would be hard for our inspection, we divide the traces 
into pieces with each containing system calls of the same 
category (like registry, file) and compare respective pieces 

                                                 
4 In practice we found the offset part of a thread name is not very 
stable, so we remove it and leave the module name only. 

instead. We noticed the following patterns of system calls 
when doing the cross-time trace comparison, as illustrated in 
Figure 3. Five normal traces of the same operation are 
aligned in the figure, where each column represents a trace, 
dark area denotes the same system calls as the first trace at 
the same positions, gray area is the system calls not occur-
ring in the first trace (but probably occurring in other traces), 
and white area means inserted spaces. 

Some system call patterns occur in all traces (category A in 
Figure 3). This might be the behavior that the system always 
performs in the situation, though it could lie in some proc-
esses other than the known relevant process. Sometimes 
certain processes known to be noisy also incur such patterns. 

Some patterns appear in a minority, half, or majority of the 
traces (category B). They may be generated due to the slight 
change in the underlying environment that the process in the 
context depends on. Since they are not always generated, 
they are not strongly relevant to the problem.  

This leads us to design a cross-time noise filtering rule that 
if a pattern occurs in more than a threshold percentage of the 
total traces for a root cause, we keep it as a feature and oth-
erwise we regard it as a noise to be discarded. 

 
Figure 3. Cross-time system call patterns 

Some system calls occurs uniquely in one trace (category C). 
By comparison we find that sometimes such system calls do 
not align with each other because their parameters are par-
tially different in each run of the problem. Specifically, 
many system calls operating on named objects but the 
names could change each time the call is invoked even 
though it is doing the same work (which can be inferred 
from the similarity of its surrounding calls in other traces 
and also confirmed by the slight difference in most of such 
names). For example, the system calls in category C of 
Figure 3 are CreateEvent with event named like 
\BaseNamedObjects\CTF.ThreadMIConnectionEvent.00000
1AC.00000000.000002E3, E4, or E5 etc. This problem is 
referred to as object name canonicalization problem. The 
object names need to be translated into such uniform ones 

A 

B 
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so that the corresponding system calls can be properly com-
pared. Currently we have some rules to transform an object 
name to a session-independent format (while retaining the 
meaning of the name as much as possible) based on a few 
such misalignments we discovered. 

In addition, there are cases that the object name is the same 
within a single running session but will change after the 
application is restarted. For example, we find Internet Ex-
plorer always accesses “minpos1400*1050(1).x” (and a 
series of relevant entries) in registry from a different loca-
tion in new instances. So we decide to discard the registry 
path and leave the name part only. 

5.2.2 Cross-Machine 
In this study the traces from the same machine are merged 
into one after cross-time noise filtering and canonicalization. 
Then the merged traces from different machines are com-
pared with each other. 

Figure 4 shows the alignment of the merged traces from 11 
machines. It can be observed that similar patterns appear as 
in cross-time trace comparison. The distinction may be 
caused by the different running environment on the ma-
chines. Similar to cross-time noise filtering, we also use 
cross-machine noise filtering to control if a pattern like this 
should be regard as noise. Its definition is the same as the 
former one. 

 
Figure 4. Cross-machine system call patterns 

Canonicalization problem also exists here. Some object 
names can be different on each machine. For example, files 
of the same purpose can be created at different locations on 
different machines, which will result in different full path 
names occurring with system calls. The canonicalization 
rule we use is simply discarding the path and leaving the file 
name only. In addition, the tracer also makes the cross-user 
canonicalization for registry paths at runtime (translating the 
user-specific prefix “\REGISTRY\USER\S*” to “HKCU” 
standing for the registry hive of the current user). 

6. EVALUATION 
In this section we evaluate how accurate our approach iden-
tifies the root causes for real problems. We first introduce 
the four problems we choose for evaluation and how the 
data are collected. We report the results of cross-time and 
cross-machine analysis, including the effect of a number of 
variations that can impact the accuracy. We use cross-time 
analysis and results as a basis for cross-machine study. 

6.1 Problem Selection 
There is no existing diagnostic dataset containing system 
call sequences that we are interested in. Most of today’s user 
feedback mechanisms do not collect system behavior infor-
mation when users report that they have encountered prob-
lems with their machines. Therefore, we need to collect data 
through fault injection. Before that we first select a set of 
problems to work on. 

Table 1. Selected problems for evaluation 
Root cause id Description 
IeDisplay 
BadIP IP address is invalid. 
BadPort The specified server port is invalid. 
BadProxy The HTTP proxy is invalid. 
BadProxyPort The HTTP proxy port is invalid. 
Disable The network connection is disabled. 
NoDriver The driver of the network adapter is not installed. 
NoPage The page visited does not exist on the server. 
NoProtocol The TCP/IP protocol is not enabled. 
Unplug The network cable is unplugged. 
WinSock2 WinSock2 registry key is corrupted. 
SharedFolder 
BadIP IP address is invalid. 
Disable The network connection is disabled. 
NoClient Client for Microsoft Networks is disabled. 
NoDriver The driver of the network adapter is not installed. 
NoHost The host does not exist. 
NoPath The shared path does not exist on the host. 
NoPermission The permission is not enough to access the folder. 
Unplug The network cable is unplugged. 
OeOpen 
DbxDamaged The mailbox file is damaged. 
DbxNoPermission The permission is not enough to access the mail-

box file. 
DbxReadOnly The mailbox file is read-only. 
IdCorrupted The registry key corresponding to the user identity 

is corrupted. 
FfDisplay (see IeDisplay)5 

Our criteria of deciding whether a problem is suitable for 
the study are based on its popularity, the diversity of its root 
causes and the ease of reproducing its symptom. After going 
through some sources of PC diagnosis knowledge we de-
cided to use four problems for evaluation as described be-
low. 

� IeDisplay. Internet Explorer cannot display a Web page. 
There are 10 potential root causes to this symptom. 

                                                 
5 Firefox actually can detect invalid proxy settings, though it does 
not distinguish between BadProxy and BadProxyPort. We include 
the two root causes for it just as an aggressive test of our approach. 



 

 

� SharedFolder. Cannot open a shared folder on the lo-
cal network. There are eight potential root causes. 

� OeOpen. Cannot open Outlook Express. There are four 
root causes. 

� FfDisplay. Mozila Firefox cannot display a Web page. 
The root causes are similar to those of IeDisplay. 

The first three problems are selected based on the frequency 
of occurrence recorded in Microsoft PSS (Product Support 
Service) service request logs. They also have corresponding 
entries in Windows XP’s built-in Help and Support Center. 
We added the last problem in order to validate the method 
on a broader set of applications. 

Table 1 gives the description of the root causes. It can be 
seen that the root causes are quite diverse, ranging from the 
faults in configuration, installation, server, to security. For 
each problem, we will treat normal status as an additional 
class to be distinguished, whose “root cause id” will be 
“Normal.” 

6.2 Data Collection 
We collected the traces by reproducing the problems on a 
number of daily-used machines. For each problem and each 
machine we first reconstruct the problem context, make sure 
the problem does not exist already and then inject the fault 
into the machine. Next the tracer is started to capture the 
trace during the symptom reproduction. For example, when 
collecting traces for the problem IeDisplay-WinSock2 
(Internet Explorer cannot display a Web page because of the 
corrupted WinSock2 registry key), we verify Internet Ex-
plorer can display web pages properly and then corrupt the 
WinSock2 registry key. Next we start the tracer and try 
browsing a Web page with Internet Explorer. After the 
symptom shows up, the tracer is stopped. For normal cases 
we just redo the actions as for other root causes without 
actually injecting any fault. 

As described in Section 2, we require the troubleshooter to 
reproduce the symptom automatically. Therefore, the train-
ing data should be collected in the same way as the testing 
data. In our experiment the symptom reproduction is per-
formed with the UI automation tool AutoMate [3]. We 
wrote a replay script for each problem, which will be exe-
cuted by AutoMate to redo the actions and wait for the 
symptom to appear. Similarly, our implementation of the 
troubleshooter will call AutoMate to reproduce the symptom. 

When collecting traces for each root cause of IeDisplay and 
FfDisplay, we launch the browser four times and each time 
followed by four navigations to a different Web page. The 
tracer is started before navigation starts and is stopped after 
the Web page is loaded completely or after an error message 
shows up. For SharedFolder we select four shared folders 
and open each folder for four times. For OeOpen Outlook 
Express is launched eight times. We only use a subset of the 

traces for each evaluation to reduce any potential dependen-
cies between reproductions as much as possible. 

Two sets of data are collected, for single-machine analysis 
and cross-machine analysis, respectively. The details are 
mentioned in Section 6.3 and 6.4. All the machines run 
Windows XP SP2. 

6.3 Single-Machine Results 
We first focus on how well the method can work on a single 
machine. In this setting the test data and the training data are 
from the same machines (but different times). The evalua-
tion is intended as an initial study on the method, which 
would be helpful when we want to extend it to a broader 
domain. The results would serve as a baseline as well. 

All the data used in the section are collected from five ma-
chines across six days for two problems (IeDisplay and 
SharedFolder). The results are obtained from sixfold cross-
validations where four traces are used for each day and the 
data of three days are taken as training data from the six 
days in turn. 

All the data are processed on a Dual 3.1 GHz Intel Pentium 
4 Xeon with 4GB memory running Windows Server 2003. 
When there is time measurement, we always ensure the load 
is light before processing. 

Threshold. We first investigate the effect of noise filtering 
threshold on the accuracy of the 1-gram classifier. We will 
take account of the sequential property of the event traces 
with higher-gram classifiers in the experiments below. 

Figure 5 shows the results of the two problems when we 
vary the threshold. The accuracy of IeDisplay mostly in-
creases with the threshold. For SharedFolder the accuracy 
does not change much, though machine2 and machine4 have 
slight decrease. This is because that the filtering could risk 
eliminating features that can be discriminative when com-
bined with some other features, though it can remove true 
noises as well. The effect on the accuracy could be depend-
ent on the problem. In spite of this, increasing the threshold 
can reduce the average dimension of the feature vectors 
corresponding to the training data by almost two orders of 
magnitude. The time needed to carry out the entire cross-
validations achieve the similar savings because the evalua-
tion of the linear kernel function of SVM consists of the 
inner product of two vectors whose complexity depends on 
the dimension of the input data. The efficiency improvement 
by dimension reduction would significantly speed up the 
process of learning the classifier and predicting the class of 
a new trace, even though at the cost that the accuracy could 
be sacrificed. 

The threshold of the remaining experiments in this section 
will be fixed to 0.8. Since it seems to be orthogonal to other 
variables, we can always try to make more optimization 
from it when necessary. 



 

 

Table 2. Effect of canonicalization on single machines 
IeDisplay SharedFolder  

Before After Before After 
1 95.45% 95.58% 96.14% 95.83% 
2 92.05% 93.18% 92.90% 93.52% 
3 94.07% 93.94% 93.36% 93.06% 
4 95.20% 95.45% 83.49% 82.41% 
5 93.69% 93.56% 94.14% 94.44% 

Canonicalization. We apply the canonicalization rules to 
the data at the preprocessing stage and the results of classi-
fication accuracy are shown in Table 2. It can be seen that 
the difference between the results with and without canoni-
calization is insubstantial. This might be because the object 
names are rather stable across time on single machines. 

Since canonicalization does not bring any negative impact 
and canonicalized events are usually more compact, we will 
include it in the next experiments. 

Table 3. Results of 2-gram and 4-gram classification on 
canonicalized single-machine data 

IeDisplay SharedFolder  
2-gram 4-gram 2-gram 4-gram 

1 96.34% 93.56% 95.99% 95.06% 
2 92.42% 90.78% 91.82% 91.67% 
3 93.18% 93.81% 91.51% 91.51% 
4 94.57% 94.32% 81.17% 81.17% 
5 95.08% 94.82% 92.28% 89.04% 

Higher n-grams. 1-gram algorithm considers a whole se-
quence of events as a set of events and does not use their 
sequential order. Next we study some higher n-gram classi-

fiers which capture the local order of events in different 
degrees. The cross-validation results of 2-gram and 4-gram 
for the data are shown in Table 3. Compared to the 1-gram 
results in Table 2 the higher-grams do not provide any im-
provement.  

Comparatively, the work on intrusion detection using sys-
tem call sequences reported patterns with length greater than 
1 give useful results [16]. However, the system call records 
used there are from a single process and have no parameter 
information. Our system call records are with parameters 
and from all processes in the system, which would signifi-
cantly increase the size of the alphabet of the sequences and 
therefore raise the chance of shorter patterns being discrimi-
native that might be missing by considering long patterns 
only. 

No thread names, parameters and return values. We also 
want to study how well the classifier can work on traces 
without logging any information about thread name, pa-
rameters and return values. On the one hand, this would 
reduce the runtime overhead of the tracer and save the stor-
age and transfer overhead. On the other, the availability of 
thread names and some parameters like those related to ob-
ject names might be platform-dependent. 

Parameters like object names may play a critical role in the 
classification. Without them, events can become less spe-
cific and therefore less discriminative. In this case the se-
quential information might be valuable. Figure 6 shows the 
results of different n-gram classifiers for the two problems. 

Two kinds of trends can be observed from the results. In 
some cases the accuracy keeps increasing with N while in 
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 (a) cross validation accuracy (b) dimension of feature vectors (c) duration of cross-validation 

Figure 5. How the accuracy and efficiency of the classifier change with the threshold of noise filtering for single-
machine cross-time system call sequences of the two problems  



 

 

the other cases the accuracy tops at 2-gram and then does 
not change much or even goes down with higher n-grams. 
For example, the accuracy of machine3 on SharedFolder 
drops from 90.9% of 2-gram to 85.2% of 4-gram. Specifi-
cally, from the predicted classes of each root cause we find 
that two root causes Disable and NoPermission which were 
properly classified by 2-gram start to be frequently misclas-
sified to NoClient by 4-gram. This means there are some 
important 2-gram features whose remaining discriminative 
would depend on the diversity of its containing 4-grams. 
Therefore, on some machines where such diversity is high, 
the feature will be missing while on other machines where 
such diversity is low the feature will be retained. In addition 
the dissimilarity of the overall trends for the two problems 
might suggest the optimal n-gram could be problem-specific. 
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(a) IeDisplay (b) SharedFolder 

Figure 6. Accuracy of the data without thread names 
changes with N-gram classifiers of different N 

In summary, we have evaluated a variety of parameters that 
can affect the result of classification in a single-machine 
cross-time setting. We found that applying canonicalization 
and higher n-gram has not brought any obvious positive 
impact. The accuracy impact of the techniques like noise 
filtering might be problem-dependent. However, it does 
improve classification efficiency significantly. Sequential 
order will help classification when thread name, parameters 
and return value are not available. For the same problem, 
the effect of some variations can differ across machines, 
which may pose a challenge for cross-machine analysis. We 
will compare these results with the cross-machine results in 
the next section. 

6.4 Cross-Machine Results 
Cross-machine evaluation is of realistic importance because 
it is unlikely a user machine is used for collecting training 
data. In a cross-machine setting the training data and the 
testing data are from two disjoint sets of machines. Similar 
to the single-machine studies, we will measure what accu-
racy the classification method can achieve under various 
conditions. 

The data used in the section are collected from 20 machines 
for the four problems. Unless specified, the results in this 
section are obtained from 10-fold cross-validations where 
10 machines are taken in turn from the 20 machines as train-
ing machines and four traces are used for each machine. We 
still start with the 1-gram classifier. 

Threshold. Figure 7 illustrates the accuracy, average feature 
vector dimension, and time for cross-validation change with 
the noise filtering threshold. We start with threshold 0.1 
since threshold 0 will generate vectors with dimension rang-
ing from 160,000 to 540,000 which is too large for the 
cross-validation to complete in a reasonable time. 

Figure 7(a) shows that the accuracy of SharedFolder and 
FfDisplay keeps almost unchanged, while that of IeDisplay 
and OeOpen drops with the increasing of the threshold.  

Figure 7(b) and (c) show that the dimension of feature vec-
tor and the time spent by cross-validation decrease exponen-
tially with the threshold, which makes it appealing to set a 
proper threshold without sacrificing much accuracy. The 
threshold in the remaining experiments in this section will 
be fixed at 0.2. 

Table 4. Effect of cross-machine canonicalization 
 Before After 
IeDisplay 82.45% 86.77% 
SharedFolder 89.72% 89% 
OeOpen 73.10% 85.20% 
FfDisplay 72.25% 84.61% 

Canonicalization. Table 4 compares the classification accu-
racy before and after canonicalization. We can see that the 
canonicalization is very effective in improving the cross-
machine accuracy compared to the single-machine result. 
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(a) cross-validation accuracy (b) dimension of feature vectors (c) duration of cross-validation 

Figure 7. Accuracy and efficiency of the classifier with the increasing of noise filtering threshold for cross-machine 
system call sequences of the four problems 



 

 

SharedFolder can achieve equal accuracy before canonicali-
zation, which might be because its traces do no refer to ob-
ject names as diverse as those of the other three problems. 
For example, Internet Explorer, Outlook Express and Fire-
fox may access numerous local files whose names can be 
highly machine-dependent, while accessing a shared folder 
may not need to do so. The remaining experiments in this 
section will all use canonicalized data. 

Higher n-grams. The results of 2-gram and 4-gram method 
as shown in Table 5 do not have any obvious improvement 
over the 1-gram result. 

Table 5. Effect of higher n-grams for cross-machine 
classification 

 2-gram 4-gram 
IeDisplay 87.64% 87% 
SharedFolder 88.19% 88.25% 
OeOpen 79.05% 71.55% 
FfDisplay 83.52% 82.09% 

We also tried another preprocessing method before extract-
ing n-grams. It simply sorts the trace records (already 
grouped by threads) by the system call name. Stable sort is 
used to retain the original relative order. The method is 
based on the observation that the successive identical sys-
tem calls are likely responsible for the same aspect of a task 
and therefore could be more coherent. Table 6 summarizes 
the results with this method. The method does make some 
improvement over the original results of 2-gram and 4-gram, 
especially for the OeOpen case. However, the new accuracy 
still has no notable difference. 

Table 6. Effect of higher n-grams with sorting traces by 
system call name before extracting n-grams 

 2-gram 4-gram 
IeDisplay 87% 88% 
SharedFolder 88.58% 88.72% 
OeOpen 82.50% 80.60% 
FfDisplay 85.16% 83.14% 
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Figure 8. Cross-machine accuracy of the trace data 

without thread names, parameters and return values 
using various n-gram classifiers 

No thread names, parameters and return values. The 
result of these data classified with various n-gram classifiers 

is given in Figure 8. It can be observed that after making 
some improvement from 1-gram by 2-gram, the n-gram only 
yields slight changes of accuracy with greater N, which 
might suggest higher n-gram only capture marginal differ-
ence between root causes. 

Convergence. One important question related to cross-
machine study is how many machines are needed for a clas-
sifier to achieve an optimal accuracy, which will determine 
the effort of data collection for the classifier to be useful. In 
practice we may only need to obtain a sufficiently high ac-
curacy. Intuitively the accuracy improvement with more 
machines can be diminishing. This is supported by Figure 9, 
where (a) is based on the results of the 1-gram classifier (on 
full trace record) and (b) is based on the 2-gram classifier 
which work on the data with trace record containing process 
name and system call name only. Each data point corre-
sponds to the 10-fold cross-validation accuracy with the 
specified number of machines used for training and the rest 
ones used for testing. Here, four traces are used for each 
machine. As can be seen, all the four problems follow the 
similar trend that the accuracy converges to a value and be-
comes steady even when more training machines are added. 
With 10 machines for training, the accuracy is usually close 
to optimal. 
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Figure 9. Accuracy grows more and more slowly with 

increasing number of machines used for training 

The highest accuracy the two methods can achieve in this 
convergence test is listed in the following table. Comparing 
the highest accuracy of the two classifiers, we can see that 
the first one gives slightly better results, which is attributed 



 

 

to the relatively low accuracy on FfDisplay of the second 
classifier. 

 IeDisplay SharedFolder OeOpen FfDisplay 
(a) 90.68% 90.28% 88.25% 88.98% 
(b) 90.68% 89.03% 90.75% 81.48% 

To summarize, our main findings in this section are: (1) 
Canonicalization is very effective on cross-machine classifi-
cations when there are parameters containing object names 
in trace records; (2) 1-gram classifier is usually good 
enough for such data. Using higher n-grams does not make 
notable improvement; (3) when only process names and 
system call names are available in traces higher n-gram 
classifiers play a critical role in providing competitive accu-
racy with (2); (4) The average accuracy converges with 
more machines used for training. Overall, we find the two 
methods we investigated can achieve considerably high ac-
curacy. 

7. DISCUSSION 
In this section we discuss some fundamental questions about 
this approach. 

7.1 Error Reporting by Programs 
A direct argument against our post-priori approach is that if 
it is possible to distinguish the root causes of a problem 
from the running behavior of the program, the developer 
should be able to change the program instead to handle the 
probably overlooked error and give more detailed report. 
However, it may not always be possible for the program to 
determine the root cause of an error and its resolution. And, 
sometimes the error detection and handling may reside in 
another component beyond the control of the component 
making use of it. Furthermore, for some low-level compo-
nents shared by high-level applications (such as networking), 
handling of their errors in each application would result in 
many duplications of the same code. In addition, our method 
can support already released products without the need to 
update deployed instances. 

Another argument against using system behavior informa-
tion to characterize problems is that it could be more accu-
rate and direct to use program-generated signatures such as 
error codes to make correlations to problem knowledge. 
Besides the analogous counter-arguments mentioned above, 
the decision on where to generate signatures would also 
require effort of developers, especially for those problems 
not caused by system errors. In addition, we also plan to 
apply this method to performance troubleshooting in which 
root causes are even harder to detect within programs. 

7.2 Automatic Symptom Reproduction 
We use automatic symptom reproduction not only for user 
convenience but also to restrict the way reproduction occurs. 
The user can browse a Web page in many ways, such as 
click a hyperlink, type a URL, go to the homepage, etc. 
Each way of reproduction may have different low-level con-

sequences though the high-level symptom could be the same. 
Moreover, the difference of the consequence could depend 
on root causes. Instead of enumerating all possible ways of 
reproduction and take them into account in data collection, 
we believe using a restricted but automatic reproduction is 
more reasonable and hopefully the accuracy could also be 
more stable. Of course the overhead is that an automation 
script needs to be authored for each problem and sometimes 
it is also non-trivial to reliably reproduce a symptom. The 
good effect is that training data can be more readily ob-
tained. And, where such automation is not possible, we can 
still resort to manual reproduction. 

8. RELATED WORK 
8.1 Automated Diagnosis 
Perhaps the work closest to ours in spirit is [20]. The au-
thors argue that a global knowledgebase associated with rich 
system information will help to automate diagnosis process. 
Though several types of automatically generated data are 
proposed, there is no data analysis method and quantitative 
experiment showing how the data can be useful for diagno-
sis. [13] presents a method for generating signatures from 
system states to help identify recurrent problems and lever-
age existing diagnosis knowledge. In this paper we focus on 
using system event traces to help identify root causes of 
known problems, but we believe our study would also be 
valuable in advocating other behavior information. Our goal 
of automated diagnosis is also similar to Autonomic Com-
puting [17] that attempts to make system self-healing by 
detecting, diagnosing, and repairing problems automatically. 

[5] attempts to automate the diagnosis process that is usu-
ally performed by human experts: system health monitoring 
and error detection, component sanity checking, and con-
figuration change tracking. The authoring of the detection 
and checking rules and logics would require the knowledge 
of human experts. For example, deciding if the Outlook 
Express mailbox file is damaged (i.e. DbxDamaged in Table 
1) would need the same level of understanding of the mail-
box file format as the developers have. 

8.2 Learning from System Behavior 
Pinpoint [10][11] employs statistical learning techniques to 
diagnose failures in a Web farm environment. After the 
traces with respect to different client requests are collected, 
some data mining algorithms are applied to determine the 
components most relevant to a failure. The main difference 
from our work is that Pinpoint intends to recognize what 
part of the existing traces contributes most to a failure. But 
our goal is to predict what class of failure a new trace be-
longs to from the knowledge of the failure categories of 
prior traces. 

Magpie [7][6] aims to analyze performance of distributed 
systems. A behavior model annotated with resource usage 
information is constructed after the event traces are clus-



 

 

tered by edit distance, which can then be used to understand 
where the performance bottlenecks are. On the contrary, the 
traces in our work are used for classification instead of clus-
tering. 

Aguilera et al. [1] attempts to locate the node of perform-
ance bottlenecks in a distributed system with only inter-
node communication traces so as to avoid application-level 
instrumentation required by the above methods. The main 
work there is to infer the causal paths in the system from 
such traces such that the node causing extraordinary delay 
can be detected. 

Cohen et al. [12] also uses learning classifier to make pre-
diction of compliance with performance objectives and help 
analyze the cause of the violation in Web server systems. 
However, the input data used there are statistical metrics 
summarizing the system behavior or state rather than the 
behavior itself as used in our approach. Another difference 
is that the target of our classification is the root cause of the 
problem among many possible candidates, while [12] uses 
classifiers to make binary decision on whether a criterion 
might be violated and determine the root cause from the 
induced model of dependencies between the metrics. Simi-
lar to our work, the candidate root causes would be limited, 
in that case to the observed metrics. Finally, the high-level 
goal of automating diagnosis by learning from observations 
of the system with statistical methods is common. 

Some host-based intrusion detection systems (IDS) use se-
quences of system calls [16][18][29] (or a subset [2]) as 
well. Besides having the common theme of taking advan-
tage of past system behaviors to recognize new behavior as 
our method, there are a number of differences. First, the 
main objective of IDS is to detect anomalous behavior re-
sulting from external, probably unknown attacks. An attack 
can happen at any moment, so it should be detected as soon 
as possible. The goal of this paper is to distinguish different 
kinds of abnormal behaviors caused by various unintended 
but known faults in a cooperative environment. Here, it is 
known (or assumed) that the application has already be-
haved abnormally and what caused it is of more interest. In 
addition, the abnormal behavior usually happens only when 
the user requests a specific service from the application. 
Second, training data used in IDS are usually collected from 
normal executions of the target application. In this paper 
training data are created from various faulty runs as well as 
normal runs of the application. Third, the difference in the 
goals and input data also makes the algorithms used by the 
two methods different, although the model used to represent 
the input data, that is, local pattern of system calls, is similar. 
In IDS a model of the application is built first and then new 
system calls are checked for consistency with the model. 
Since our scheme can be formulated as a classification prob-
lem, we choose to use the popular classification algorithm 
SVM. Fourth, false positive rate is an important metric to 
evaluate IDS. For problem diagnosis we pay attention to 

accuracy of fault prediction instead because it is not the re-
sponsibility of our system to tell if the application is normal 
or not. However, in the paper we did include normal behav-
ior among other faults in the evaluation and the results show 
that the normal traces can be recognized accurately as well. 

8.3 Other Fault Localization Techniques 
[4][21] exploit program running traces to localize bugs by 
comparing an error trace with correct traces. The idea can be 
applied in this scenario to isolate the component that is rele-
vant to the deviation of the trace from a normal trace. Since 
the traces are usually obtained in a black box way, the 
granularity of isolation would depend on how detailed the 
system running behavior is revealed. Furthermore, the suc-
cess of the method still relies on the assumption that the 
fault lies exactly at the branching point of an abnormal trace, 
which does not hold when the control flow change is not 
caused by an immediate state change. 

Fault localization in computer networks has a close goal to 
find the root cause from a set of observed symptoms [24]. 
The codebook technique [33] is similar to our classification 
approach in exploiting the correlation of the observed events 
and the root causes. However, the fault localization there 
requires a prior specification of causality graph which re-
quires the knowledge of dependencies among system com-
ponents. In our approach we use the passively and automati-
cally monitored events to build the correlation. 

9. CONCLUSION 
We have proposed a new method to diagnose known prob-
lems with system behavior information. Specifically, we 
correlate traces of system calls captured during symptom 
reproductions to problem root causes and apply statistical 
learning technique on traces and correlations to predict root 
causes of new occurrences of problems with their corre-
sponding traces in context. 

We have evaluated our approach with four problems with 
diverse root causes and find it can achieve considerable ac-
curacy. With the noise filtering and canonicalization rules 
devised based on the observations of system call change 
patterns, we experimented with various methods and options 
on the traces collected from a number of real machines and 
the resulting accuracy of root cause detection is nearly 90%. 

We think our approach is a necessary step to enable auto-
mated diagnosis of known problems. The system informa-
tion in the problem context should not be missed in the di-
agnosis process. By mining these data with statistical meth-
ods, we can draw useful features that would significantly 
improve the efficiency of today’s diagnosis process. 

Besides system calls chosen in this paper, I/O requests such 
as network communications are also an important aspect of 
system behavior. We plan to extend the tracer to capture 
additional kinds of events and evaluate their contribution to 
diagnosing other problems with our approach. 



 

 

Currently, the symptom of the problem needs to be repro-
duced before the root cause detection. Sometime it is not 
convenient for the user or it may not be possible. The step 
can be avoided with an always-on tracer. However, the chal-
lenge then would be pinpointing the most relevant piece of 
the trace. 
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