

Automated Known Problem Diagnosis with Event Traces
Chun Yuan1, Ni Lao3, Ji-Rong Wen1, Jiwei Li4, Zheng Zhang1, Yi-Min Wang2, Wei-Ying Ma1

1Microsoft Research Asia
5/F, Sigma Center, No. 49 Zhichun Road,

Beijing, China 100080
+86-10-62617711

{cyuan,jrwen,zzhang,wyma}@microsoft.com

2Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1 (425) 7063467

ymwang@microsoft.com

3Tsinghua University
9-101, Tsinghua University,

Beijing, China 100084
+86-10-62777057

noon99@mails.tsinghua.edu.cn

4University of Science and Technology of China
No. 96 Jinzhai Road,

Hefei, Anhui, China 230026
+86-551-3601800

li_jiwei@ustc.edu

ABSTRACT
Computer problem diagnosis remains a serious challenge to
users and support professionals. Traditional troubleshooting
methods relying heavily on human intervention make the
process inefficient and the results inaccurate even for solved
problems, which contribute significantly to user’s dissatis-
faction. We propose to use system behavior information
such as system event traces to build correlations with solved
problems, instead of using only vague text descriptions as in
existing practices. The goal is to enable automatic identifi-
cation of the root cause of a problem if it is a known one,
which would further lead to its resolution. By applying sta-
tistical learning techniques to classifying system call se-
quences, we show our approach can achieve considerable
accuracy of root cause recognition by studying four case
examples.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
diagnostics, tracing

General Terms
Algorithms, Measurement, Experimentation

Keywords
System call sequences, root cause analysis, support vector machine

1. INTRODUCTION
With the increasing complexity of modern computer sys-
tems, problem diagnosis has become a major challenge for
users and support engineers. A typical process of problem
diagnosis is seemingly simple: A human or machine trou-
bleshooter first provides a description of the problem that
has happened, then some sort of analysis is performed and
the root cause of the problem is identified, and finally a
remedy is applied to solve the problem. In short, the para-
digm of problem diagnosis is:

Problem description ���� root cause ���� solution

In general, the “root cause ���� solution” pairs can be ob-
tained from past problem-solving experiences. These la-
beled pairs can be called “known problem”. In such cases,
the problem diagnosis paradigm can be transformed to:

Problem description ���� known problem

We intend to use the simplified paradigm to automate the
process of problem diagnosis, leveraging past problem-
solving knowledge to train classifiers for automatic identifi-
cation of the root cause of a problem. Let us first take a look
at the following example:

Example – “The page cannot be displayed” problem in
Windows Internet Explorer (IE): when the computer has a
network connection or setting error, the “The page cannot
be displayed” error message will be prompted to the user.
Through analyzing the problem-solving logs of a technical
support center, we identified the top 10 possible root causes
for this problem:

1. BadIP: IP address is invalid
2. BadPort: the specified server port is invalid
3. BadProxy: the HTTP proxy is invalid
4. BadProxyPort: the HTTP proxy port is invalid
5. Disable: the network connection is disabled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EuroSys’06, April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004...$5.00.

6. NoDriver: the driver of the network adapter is not in-
stalled

7. NoPage: the page visited does not exist on the server
8. NoProtocol: the TCP/IP protocol is not enabled
9. Unplug: the network cable is unplugged
10. WinSock2: WinSock2 registry key is corrupted

This is a very typical problem that needs significant efforts
for troubleshooting because for the same symptom “The
page cannot be displayed”, there are at least 10 possible root
causes. Moreover, the root causes may come from diverse
sources. For instance, in the above listed 10 root causes,
three of them are related to TCP/IP, three related to HTTP,
two related to network driver, one related to registry, and
another related to hardware.

Currently, there are two kinds of mainstream problem diag-
nosis methodologies – text-based diagnosis and state-based
diagnosis. Using the above example problem, we analyze
the pros and cons of these two existing methodologies.

Text-based diagnosis – Traditionally, the user finds solu-
tion by text-based search in past problem solution knowl-
edge base. A common experience is that the user summa-
rizes the symptom of a problem with her own words and
then search through various data sources like company’s
online support websites. Thus, the paradigm of text-based
diagnosis could be viewed as: text symptom description ����
troubleshooting documents.

The effectiveness of this approach is highly variable. Some-
times it is difficult for the user to describe the symptom.
Furthermore, manual query is prone to ambiguity and inac-
curacy which would lead to inaccurate search results. Like
the above example, frequently there are many root causes
that could yield the same symptom, and they would have to
be distinguished by hand. In summary, to manually com-
pose accurate problem descriptions is a difficult task for
users or even professionals in most cases. Moreover, even if
an accurate problem description could be made, the search
results are a list of relevant or irrelevant documents due to
the inherent inaccuracy of information retrieval techniques.
For example, searching “The page cannot be displayed” will
return thousands of results from a typical web search engine.
It is still a very challenging task for users to figure out the
real root cause and solution by browsing through the docu-
ments. As a result, text-based diagnosis greatly suffers from
its inaccuracy and heavy human involvement, even though it
is a straightforward method which has been used for a long
time.

State-based diagnosis – Low-level system state informa-
tion has been used extensively in program debugging and
problem diagnosis since it can reveal more detailed context
which might indicate the source of a problem. Many tools
attempt to automate the fault diagnosis task using system
states (such as [28][30]). These tools use some mechanisms
to detect abnormal system states, and then relate the states to

known problems. For example, to solve configuration prob-
lems [28] uses various techniques to narrow down the list of
candidate root causes, including persistent state differencing,
runtime tracing, intersection and statistical ranking. Then
configuration roll-back [31] can be applied to fix the prob-
lem. The work in [30] further attempts to automatically find
the good state to roll-back to. Thus, the general paradigm of
state-based troubleshooting is: system state information ����
root cause or known problem.

For state-based diagnosis, the whole diagnosis process is
pretty automatic and requires no or very little human in-
volvement. Its accuracy is also good in the case that the ab-
normal state is correctly identified. In addition, since ab-
normal state is directly identified, some unknown problems
could be detected and solved by this method. Despite these
merits, state-based diagnosis methods have several inherent
shortcomings. First, accurately isolating abnormal system
states is usually non-trivial, considering that a modern com-
puter system contains so many kinds of states. Tools in [28]
can only give a candidate set containing tens of “possible”
abnormal states in the ideal cases. Second, in many cases, a
state by itself cannot tell if it is normal or abnormal. For
instance, a specific IP address could be normal in one ma-
chine and abnormal in another machine. Third, state-based
diagnosis will not work when the root cause is not contained
in the collected system states. If a state-based troubleshooter
is designed to only collect registry related states, it can do
nothing about those problems with file related root causes.
While collecting as many kinds of states as possible can
alleviate the problem, it is usually unrealistic to collect all or
even most of the state information in a complex computer
system. Therefore, the generality of this method is not satis-
factory. Fourth, most existing state-based diagnosis tools
treat states separately and target to build a kind of direct
mapping between single state and root cause or known prob-
lem. However, problems caused by multiple abnormal states
cannot be dealt with by this strategy.

In this paper, we propose a novel trace-based problem
diagnosis methodology, which relies on the trace of low-
level system behaviors to deduce problems of computer
systems. Behavior information is trails of various transient
events occurring in the system, such as system calls, I/O
requests, call stacks, context switches, etc. We intend to
identify the correlations between system behaviors and
known problems and then use the learned knowledge to
solve new coming problems. Thus the new diagnosis para-
digm is: system behavior information ���� known problem.

We study the effectiveness of this method with four exam-
ple cases. We find that with appropriate processing method
and learning algorithm, the root cause of a problem can be
identified at a considerable accuracy. Also, problems with
various root cause sources could be correctly identified,
even when the root causes are not contained in the traces.
The result strongly supports that there does exist some asso-

ciation between low-level system behavior and high-level
problem and the trace-based problem diagnosis is a promis-
ing troubleshooting method with good accuracy and gener-
ality.

This paper is organized as follows. In Section 2 we describe
the design of the automated diagnosis system. We introduce
the event tracing component in Section 3 and describe the
classifier we use to learn from system behavior and predict
root cause in Section 4. In Section 5 we report our observa-
tions on system event traces which help us to design noise
filtering and canonicalization rules. In Section 6 we evaluate
this approach with four problems having diverse root causes.
In Section 7 we discuss some questions about the method.
We introduce related work in Section 8.

2. SYSTEM DESIGN
This section describes the design of the automatic trouble-
shooting system which diagnoses problems with event
traces collected from user machines. The illustration of the
system architecture is shown in Figure 1.

The goal of the system is to minimize user involvement in
problem diagnosis. When a user encounters a problem, for
example Internet Explorer cannot display a Web page, she
only needs to start the troubleshooter that handles the IE
display problem. The steps follow are described below.

(1) The troubleshooter will replay the IE browsing opera-

tion to reproduce the symptom.1 At the same time it
will start the event tracer to collect the sequence of sys-
tem events that will be incurred.

(2) Then the trace log is sent to the classifier. After some
preprocessing and transformation, the classifier will
analyze the input trace and identify the root cause based
on its similarity with the previously collected and la-
beled traces.

1 The problems that can not be reliably reproduced are beyond the
scope of the paper.

(3) The root cause and the corresponding solution will be
sent to the troubleshooter, which can present a report of
repair instructions to the user or even fix the problem
automatically.

Step (4) is responsible for learning the classifier for root
cause identification. With a database of known problems
and their root causes (from the past accumulation of diagno-
sis knowledge), a number of event traces can be collected
for them offline and labeled with the corresponding root
causes. Then the classifier can learned from the event traces
and build a prediction model, which is used to forecast the
root causes of the traces submitted by end users. It is possi-
ble to leverage the user-submitted traces in the learning,
which could save some data collection effort.

Although the classifier can be continuously updated if de-
ployed on a support center, it can also (sometimes has to)
reside on the user’s local machine with a pre-computed pre-
diction model for some frequent problems and networking
issues.

In the next two sections we will describe the two main com-
ponents – tracer and classifier – in detail.

3. TRACER
The tracer will log the sequence of events triggered in the
system when the symptom of a problem is being reproduced.
The sequence will serve as a representation of the problem
and be delivered for analysis and recognition.

There are many kinds of events in a running system and
they can occur at various levels. A higher-level event can be
an abstraction of some lower-level events. For example, an
action on the application’s user interface could result in a
series of function calls to a dynamic library, which might
further ask for system services with system calls. The sys-
tem calls are finally realized by machine instructions. Trac-
ing events at these levels would require different implemen-
tation mechanisms and reveal different degrees of detail.
Each level may need diverse effort in obtaining similar cov-
erage of system behavior. And the granularity of behavior
characterization would change with the level of observation
as well. A series of instructions would tell more about the
dynamics in the machine than a function call to a library
does. The side effect is that the variation of instruction se-
quences could also be more significant than function call
sequences. Another factor we have considered is the seman-
tics of an event, because we may need to inspect the logged
events in the development of the method and a function call
is often more intuitive and meaningful for us to understand.
Usually, the higher the tracing level is, the richer semantics
an event would contain.

Taking the trade-off between granularity and semantic rich-
ness into account, we choose to use system call as the type
of events to monitor. Since system calls provide core system
services and are frequently invoked, at this level most as-

Figure 1. Automatic troubleshooting system
The dotted edge means the step can be done offline.

Troubleshooter

Tracer

Classifier

Apps
Known

Problem DB
Labeling

(1)

(2)

(3)
(4)

pects of application and system behavior would be covered
at a considerable granularity. System calls also have clear
semantics about the operating system and thus offer some
extent of understandability. In addition it might be one of
the most similar event types across popular operating sys-
tems, which would be helpful to extend our result to broader
environments. There are also known techniques and tools
for collecting system calls on various platforms. Therefore,
we think it is a good starting point for our study. In the fu-
ture we plan to try some lower-level events like I/O requests
(e.g. network packets) and higher-level events like function
calls to various libraries or application-specific events ac-
tively generated by developers for the purpose of debugging.
Simultaneously investigating events from multiple providers
might be feasible as well.

The current tracer collects most of the system calls on Win-
dows XP, which are relevant to various kernel objects like
process, thread, registry, file, mutex, semaphore, event, 2
section, access token as well as facilities like security, audit-
ing and local procedure call. It also traces some system calls
about Win32 messaging, which constitutes the event-driven
model of Windows. For each system call the tracer records
the following attributes.

� Sequence number
� Process ID
� Thread ID
� Process name
� Thread name
� System call name
� System call parameters
� System call return value

Sequence numbers denote the order of event occurrences.
However, system calls are logged upon exit, so nested calls
will appear before the caller. Since this always happens
within a thread, the relative order remains deterministic.

Process ID and thread ID are used to distinguish system
calls from different tasks. Process name is the image name
of the process making the system call. We use the start ad-
dress of the thread to resolve the thread name. Specifically,
we figure out the module3 containing the thread start address
according to the module layout of the process. Then the
module name plus the offset relative to the module start
address is regarded as the thread name. Process name and
thread name are used to seriate the system calls of a trace
session in a uniform way, as described in Section 5.1.

System call parameters suggest more specific semantics
about a system call. Where possible we always translate a
parameter into a meaningful and session-independent form

2 Here event is a kind of kernel object for synchronization or noti-
fication between threads in Windows. Event has a more general
sense elsewhere in the paper.
3 In Windows a module is an executable file or dynamic link li-
brary. Each process contains one or more modules.

so that it can be compared with each other reasonably. For
example, kernel objects can be named and many system
calls access kernel objects through handles, so a parameter
referring to a kernel object handle will be logged as the ob-
ject name queried with the handle.

The tracer is implemented as a kernel-mode driver relying
on system call hooking techniques [22][25][19] to intercept
the system calls. The logging of intercepted events is done
through WPP Software Tracing [32] which is a low-
overhead mechanism for kernel-mode drivers to log real-
time messages. In our experience when the tracer is running
on a typical modern machine there is no noticeable perform-
ance degradation for most operations. In addition event loss
is always reported so we can avoid collecting incomplete
traces.

For the reason mentioned in Section 5.1, process/thread be-
ginning and end events are also logged along with system
calls by the process/thread creation/deletion callback rou-
tines set by the tracer.

The size of a trace log is highly variable, depending on the
length of a session (reproduction) and the application. It can
generate a log of about 10Mbytes (57K events) for a Web
browsing action in Internet Explorer (a browsing button is
pressed to the page is fully loaded). However, the current
trace format is highly redundant and a compact representa-
tion can reduce the size by an order of magnitude (the above
log file becomes about 0.7Mbytes after compression). Since
trace size will largely determine the efficiency of storage,
remote transfer, and analysis, it would be very important to
have the option to cut down the amount of information to be
logged without sacrificing accuracy. In the meantime, less
information to log also means less runtime overhead in trac-
ing. We will discuss this issue in the evaluation part.

4. CLASSIFIER
The classifier is responsible for predicting the root cause
(class) of a new trace (test data) based on the previous traces
with known root causes (labeled training data). The key
component of the classifier is feature representation, i.e.
developing effective mathematical form of input data so that
different classes can be accurately distinguished by a classi-
fication algorithm. We first introduce the n-gram model we
use as feature representation of system call sequences and
then give some background on the SVM classification algo-
rithm.

4.1 N-gram Based Representation
An n-gram is any N successive symbols from a symbol
string. When N=1, it becomes the “bag of symbol” repre-
sentation. N-gram models were used early for natural lan-
guage understanding [26] and later text categorization [8].
They are simple and can construct features from sequential
data while maintaining its sequential information.

Given a set of system call sequences as training data, we
first extract n-grams (features) of all sequences and each of
them will represent a dimension of a high-dimensional vec-
tor space. Then for any system call sequence (either for test-
ing or training) we represent it as a feature vector of {0, 1}
by setting 1 at a component of the vector if the correspond-
ing n-gram is contained in the sequence and setting 0 other-
wise. The bit vectors are ready to be used by a classification
algorithm for learning and prediction.

4.2 Classification by Support Vector Machines
Support Vector Machines (SVM) is a pattern classification
algorithm developed by V. Vapnik [27]. It solves two-class
pattern recognition problems based on the Structural Risk
Minimization principle. Given a training set in the feature
space, this method finds the best decision hyperplane that
separates the two classes, so that it gives the best expected
generalization ability. It has been shown to perform well on
high dimensional data sets with small sizes, which is an
ideal property for the data types we are dealing with.

Given a data set t
iii yD 1},{ == x of labeled examples, where

xi ∈ Rn (in our case the bit vectors), yi ∈ {-1,1}, we wish to
select, among the infinite number of linear classifiers that
separate the data, one that minimizes the generalization er-
ror, or at least an upper bound on it. Vapnik showed that the
hyperplane with this property is the one that leaves the
maximum margin between the two classes. Given a new
data point x to classify, a label is assigned according to its
relationship to the decision boundary (hyper-plane), and the
corresponding decision function is:

),()(
1
�
=

−=
t

i
iii bysignf xxx α

From this equation it is possible to see that the αi associated
with the training point xi expresses the strength with which
that point is embedded in the final decision function. A re-
markable property of this alternative representation is that
often only a subset of the points will be associated with non-
zero αi. These points are called support vectors and are the
points that lie closest to the separating hyperplane.

The nonlinear support vector machine maps the input vari-
able into a high dimensional (often infinite dimensional)
space, and applies the linear support vector machine in the
space. Computationally, this can be achieved by the applica-
tion of a (reproducing) kernel. The corresponding nonlinear
decision function is:

)),(()(
1
�

=

−=
t

i
iii bKysignf xxx α

where K is the kernel function. Some typical kernel func-
tions include polynomial kernel, Gaussian RBF kernel, and
sigmoid kernel. For multi-class classification problem, one-
against-all scheme [14] can be used.

We choose the widely used libSVM package [9] as the im-
plementation of the algorithm. LibSVM will learn a predic-
tion model from a specified training set and store it as a per-
sistent file which can be loaded by any new instance of the
classifier. We use the linear SVM kernel in our experiment,
because it is more robust than nonlinear kernel and does not
need to tune any parameter.

Though SVM is very efficient in learning on high-
dimensional data, the actual computational complexity
would still rely on the dimension of the input data. For ex-
ample with the linear kernel the basic operation would be
the inner product of two vectors. In practice we often need
to reduce the dimension to make the classification task more
efficient, for example applying the noise filtering rule de-
scribed in Section 5.2.

A classifier is usually measured by its accuracy in predicting
unknown data, i.e. the percentage of the correctly predicted
data. We use the cross-validation procedure throughout our
experiments to prevent overfitting on a limited data set. In a
standard k-fold cross-validation we first divide the training
data into k partitions and then repeat selecting one partition
of data to test with the classifier trained from the remaining
data until all data are tested. The cross-validation we use is a
slight variation based on this for controlling the size of the
training data. Then the accuracy of the classifier will be
averaged over all folds of the cross-validation.

5. NOISE FILTERING AND CANONICALI-
ZATION
The section describes our observations on system behavior
variation by comparing the system call sequences with se-
quence alignment. We designed some rules for noise filter-
ing and canonicalization based on these observations.

Trace comparison is an important primitive for understand-
ing system behavior distinctions under different situations
(such as times and machines of tracing, root causes of a
problem) and hence for characterizing system behavior from
multiple traces.

We use sequence alignment [15] as a basic tool to compare
traces. A sequence alignment algorithm tries to find the
maximal similarity of two sequences. For example, Figure 2
shows the alignment of two strings, where white spaces are
inserted to allow noncontiguous matches. Without any
knowledge of the application program, this would be a rea-
sonable method we can rely on for comparison.

Original Aligned
[abcefh] [abc ef h]
[bcdfghi] [bcd fghi]
Figure 2. Sequence alignment example

To compare more sequences simultaneously, we use a sim-
plified multiple sequence alignment algorithm based on
pair-wise alignment. Its time complexity only increases line-

arly with the number of sequences used, and the effect is
close to the optimal alignment according to our datasets.

However, raw traces are not suitable to be compared di-
rectly since irrelevant system calls may disturb alignment.
For stable comparison, we attempt to identify and eliminate
random effects as much as possible and serialize traces in a
uniform manner before alignment.

5.1 Uniform Ordering
System calls from different threads can occur in random
orders as a result of thread scheduling effect. Therefore,
traces cannot be reasonably compared before they are reor-
dered in a uniform way. Thread interleaving effect can be
handled by looking at thread ids of system calls. In case of
two threads being assigned the same id in a trace session,
we can tell them apart using the thread beginning and end
events. Processes are separated in the same way. Thus, a
trace can be divided into segments each of which represents
the activity of a single unique thread.

After segmentation, we sort the system calls by process
name and thread name.4 Within each thread they are ordered
by their sequence numbers. Processes/threads with the same
name will be ordered by their first occurrence. The first oc-
currence of a process/thread is defined as the sequence
number of the first captured system call of the proc-
ess/thread. This is suggested by the observation that it is
very likely that such processes/threads occur in a non-
random order.

With this ordering scheme the system calls generated by the
instances of the same logical thread in different traces can
be positioned in a way that reveals similarity of different
traces as much as possible.

5.2 System Call Variation
Below we report our study on system behavior changes with
different aspects of traces in terms of time and machine of
trace collection. This study will help us to focus on the es-
sential parts in traces and design noise filtering and canoni-
calization rules. All the studies are based on the traces col-
lected for the same operation replayed on some normal ma-
chines.

5.2.1 Cross-Time
We first study how system behavior changes with time. The
traces are first reformatted with the uniform ordering as
introduced in Section 5.1. Then we watch for patterns of
continuous system calls in different traces through trace
comparison. Because the traces containing all kinds of sys-
tem calls are usually very long (10,000~100,000 calls),
which would be hard for our inspection, we divide the traces
into pieces with each containing system calls of the same
category (like registry, file) and compare respective pieces

4 In practice we found the offset part of a thread name is not very
stable, so we remove it and leave the module name only.

instead. We noticed the following patterns of system calls
when doing the cross-time trace comparison, as illustrated in
Figure 3. Five normal traces of the same operation are
aligned in the figure, where each column represents a trace,
dark area denotes the same system calls as the first trace at
the same positions, gray area is the system calls not occur-
ring in the first trace (but probably occurring in other traces),
and white area means inserted spaces.

Some system call patterns occur in all traces (category A in
Figure 3). This might be the behavior that the system always
performs in the situation, though it could lie in some proc-
esses other than the known relevant process. Sometimes
certain processes known to be noisy also incur such patterns.

Some patterns appear in a minority, half, or majority of the
traces (category B). They may be generated due to the slight
change in the underlying environment that the process in the
context depends on. Since they are not always generated,
they are not strongly relevant to the problem.

This leads us to design a cross-time noise filtering rule that
if a pattern occurs in more than a threshold percentage of the
total traces for a root cause, we keep it as a feature and oth-
erwise we regard it as a noise to be discarded.

Figure 3. Cross-time system call patterns

Some system calls occurs uniquely in one trace (category C).
By comparison we find that sometimes such system calls do
not align with each other because their parameters are par-
tially different in each run of the problem. Specifically,
many system calls operating on named objects but the
names could change each time the call is invoked even
though it is doing the same work (which can be inferred
from the similarity of its surrounding calls in other traces
and also confirmed by the slight difference in most of such
names). For example, the system calls in category C of
Figure 3 are CreateEvent with event named like
\BaseNamedObjects\CTF.ThreadMIConnectionEvent.00000
1AC.00000000.000002E3, E4, or E5 etc. This problem is
referred to as object name canonicalization problem. The
object names need to be translated into such uniform ones

A

B

C

so that the corresponding system calls can be properly com-
pared. Currently we have some rules to transform an object
name to a session-independent format (while retaining the
meaning of the name as much as possible) based on a few
such misalignments we discovered.

In addition, there are cases that the object name is the same
within a single running session but will change after the
application is restarted. For example, we find Internet Ex-
plorer always accesses “minpos1400*1050(1).x” (and a
series of relevant entries) in registry from a different loca-
tion in new instances. So we decide to discard the registry
path and leave the name part only.

5.2.2 Cross-Machine
In this study the traces from the same machine are merged
into one after cross-time noise filtering and canonicalization.
Then the merged traces from different machines are com-
pared with each other.

Figure 4 shows the alignment of the merged traces from 11
machines. It can be observed that similar patterns appear as
in cross-time trace comparison. The distinction may be
caused by the different running environment on the ma-
chines. Similar to cross-time noise filtering, we also use
cross-machine noise filtering to control if a pattern like this
should be regard as noise. Its definition is the same as the
former one.

Figure 4. Cross-machine system call patterns

Canonicalization problem also exists here. Some object
names can be different on each machine. For example, files
of the same purpose can be created at different locations on
different machines, which will result in different full path
names occurring with system calls. The canonicalization
rule we use is simply discarding the path and leaving the file
name only. In addition, the tracer also makes the cross-user
canonicalization for registry paths at runtime (translating the
user-specific prefix “\REGISTRY\USER\S*” to “HKCU”
standing for the registry hive of the current user).

6. EVALUATION
In this section we evaluate how accurate our approach iden-
tifies the root causes for real problems. We first introduce
the four problems we choose for evaluation and how the
data are collected. We report the results of cross-time and
cross-machine analysis, including the effect of a number of
variations that can impact the accuracy. We use cross-time
analysis and results as a basis for cross-machine study.

6.1 Problem Selection
There is no existing diagnostic dataset containing system
call sequences that we are interested in. Most of today’s user
feedback mechanisms do not collect system behavior infor-
mation when users report that they have encountered prob-
lems with their machines. Therefore, we need to collect data
through fault injection. Before that we first select a set of
problems to work on.

Table 1. Selected problems for evaluation
Root cause id Description
IeDisplay
BadIP IP address is invalid.
BadPort The specified server port is invalid.
BadProxy The HTTP proxy is invalid.
BadProxyPort The HTTP proxy port is invalid.
Disable The network connection is disabled.
NoDriver The driver of the network adapter is not installed.
NoPage The page visited does not exist on the server.
NoProtocol The TCP/IP protocol is not enabled.
Unplug The network cable is unplugged.
WinSock2 WinSock2 registry key is corrupted.
SharedFolder
BadIP IP address is invalid.
Disable The network connection is disabled.
NoClient Client for Microsoft Networks is disabled.
NoDriver The driver of the network adapter is not installed.
NoHost The host does not exist.
NoPath The shared path does not exist on the host.
NoPermission The permission is not enough to access the folder.
Unplug The network cable is unplugged.
OeOpen
DbxDamaged The mailbox file is damaged.
DbxNoPermission The permission is not enough to access the mail-

box file.
DbxReadOnly The mailbox file is read-only.
IdCorrupted The registry key corresponding to the user identity

is corrupted.
FfDisplay (see IeDisplay)5

Our criteria of deciding whether a problem is suitable for
the study are based on its popularity, the diversity of its root
causes and the ease of reproducing its symptom. After going
through some sources of PC diagnosis knowledge we de-
cided to use four problems for evaluation as described be-
low.

� IeDisplay. Internet Explorer cannot display a Web page.
There are 10 potential root causes to this symptom.

5 Firefox actually can detect invalid proxy settings, though it does
not distinguish between BadProxy and BadProxyPort. We include
the two root causes for it just as an aggressive test of our approach.

� SharedFolder. Cannot open a shared folder on the lo-
cal network. There are eight potential root causes.

� OeOpen. Cannot open Outlook Express. There are four
root causes.

� FfDisplay. Mozila Firefox cannot display a Web page.
The root causes are similar to those of IeDisplay.

The first three problems are selected based on the frequency
of occurrence recorded in Microsoft PSS (Product Support
Service) service request logs. They also have corresponding
entries in Windows XP’s built-in Help and Support Center.
We added the last problem in order to validate the method
on a broader set of applications.

Table 1 gives the description of the root causes. It can be
seen that the root causes are quite diverse, ranging from the
faults in configuration, installation, server, to security. For
each problem, we will treat normal status as an additional
class to be distinguished, whose “root cause id” will be
“Normal.”

6.2 Data Collection
We collected the traces by reproducing the problems on a
number of daily-used machines. For each problem and each
machine we first reconstruct the problem context, make sure
the problem does not exist already and then inject the fault
into the machine. Next the tracer is started to capture the
trace during the symptom reproduction. For example, when
collecting traces for the problem IeDisplay-WinSock2
(Internet Explorer cannot display a Web page because of the
corrupted WinSock2 registry key), we verify Internet Ex-
plorer can display web pages properly and then corrupt the
WinSock2 registry key. Next we start the tracer and try
browsing a Web page with Internet Explorer. After the
symptom shows up, the tracer is stopped. For normal cases
we just redo the actions as for other root causes without
actually injecting any fault.

As described in Section 2, we require the troubleshooter to
reproduce the symptom automatically. Therefore, the train-
ing data should be collected in the same way as the testing
data. In our experiment the symptom reproduction is per-
formed with the UI automation tool AutoMate [3]. We
wrote a replay script for each problem, which will be exe-
cuted by AutoMate to redo the actions and wait for the
symptom to appear. Similarly, our implementation of the
troubleshooter will call AutoMate to reproduce the symptom.

When collecting traces for each root cause of IeDisplay and
FfDisplay, we launch the browser four times and each time
followed by four navigations to a different Web page. The
tracer is started before navigation starts and is stopped after
the Web page is loaded completely or after an error message
shows up. For SharedFolder we select four shared folders
and open each folder for four times. For OeOpen Outlook
Express is launched eight times. We only use a subset of the

traces for each evaluation to reduce any potential dependen-
cies between reproductions as much as possible.

Two sets of data are collected, for single-machine analysis
and cross-machine analysis, respectively. The details are
mentioned in Section 6.3 and 6.4. All the machines run
Windows XP SP2.

6.3 Single-Machine Results
We first focus on how well the method can work on a single
machine. In this setting the test data and the training data are
from the same machines (but different times). The evalua-
tion is intended as an initial study on the method, which
would be helpful when we want to extend it to a broader
domain. The results would serve as a baseline as well.

All the data used in the section are collected from five ma-
chines across six days for two problems (IeDisplay and
SharedFolder). The results are obtained from sixfold cross-
validations where four traces are used for each day and the
data of three days are taken as training data from the six
days in turn.

All the data are processed on a Dual 3.1 GHz Intel Pentium
4 Xeon with 4GB memory running Windows Server 2003.
When there is time measurement, we always ensure the load
is light before processing.

Threshold. We first investigate the effect of noise filtering
threshold on the accuracy of the 1-gram classifier. We will
take account of the sequential property of the event traces
with higher-gram classifiers in the experiments below.

Figure 5 shows the results of the two problems when we
vary the threshold. The accuracy of IeDisplay mostly in-
creases with the threshold. For SharedFolder the accuracy
does not change much, though machine2 and machine4 have
slight decrease. This is because that the filtering could risk
eliminating features that can be discriminative when com-
bined with some other features, though it can remove true
noises as well. The effect on the accuracy could be depend-
ent on the problem. In spite of this, increasing the threshold
can reduce the average dimension of the feature vectors
corresponding to the training data by almost two orders of
magnitude. The time needed to carry out the entire cross-
validations achieve the similar savings because the evalua-
tion of the linear kernel function of SVM consists of the
inner product of two vectors whose complexity depends on
the dimension of the input data. The efficiency improvement
by dimension reduction would significantly speed up the
process of learning the classifier and predicting the class of
a new trace, even though at the cost that the accuracy could
be sacrificed.

The threshold of the remaining experiments in this section
will be fixed to 0.8. Since it seems to be orthogonal to other
variables, we can always try to make more optimization
from it when necessary.

Table 2. Effect of canonicalization on single machines
IeDisplay SharedFolder

Before After Before After
1 95.45% 95.58% 96.14% 95.83%
2 92.05% 93.18% 92.90% 93.52%
3 94.07% 93.94% 93.36% 93.06%
4 95.20% 95.45% 83.49% 82.41%
5 93.69% 93.56% 94.14% 94.44%

Canonicalization. We apply the canonicalization rules to
the data at the preprocessing stage and the results of classi-
fication accuracy are shown in Table 2. It can be seen that
the difference between the results with and without canoni-
calization is insubstantial. This might be because the object
names are rather stable across time on single machines.

Since canonicalization does not bring any negative impact
and canonicalized events are usually more compact, we will
include it in the next experiments.

Table 3. Results of 2-gram and 4-gram classification on
canonicalized single-machine data

IeDisplay SharedFolder
2-gram 4-gram 2-gram 4-gram

1 96.34% 93.56% 95.99% 95.06%
2 92.42% 90.78% 91.82% 91.67%
3 93.18% 93.81% 91.51% 91.51%
4 94.57% 94.32% 81.17% 81.17%
5 95.08% 94.82% 92.28% 89.04%

Higher n-grams. 1-gram algorithm considers a whole se-
quence of events as a set of events and does not use their
sequential order. Next we study some higher n-gram classi-

fiers which capture the local order of events in different
degrees. The cross-validation results of 2-gram and 4-gram
for the data are shown in Table 3. Compared to the 1-gram
results in Table 2 the higher-grams do not provide any im-
provement.

Comparatively, the work on intrusion detection using sys-
tem call sequences reported patterns with length greater than
1 give useful results [16]. However, the system call records
used there are from a single process and have no parameter
information. Our system call records are with parameters
and from all processes in the system, which would signifi-
cantly increase the size of the alphabet of the sequences and
therefore raise the chance of shorter patterns being discrimi-
native that might be missing by considering long patterns
only.

No thread names, parameters and return values. We also
want to study how well the classifier can work on traces
without logging any information about thread name, pa-
rameters and return values. On the one hand, this would
reduce the runtime overhead of the tracer and save the stor-
age and transfer overhead. On the other, the availability of
thread names and some parameters like those related to ob-
ject names might be platform-dependent.

Parameters like object names may play a critical role in the
classification. Without them, events can become less spe-
cific and therefore less discriminative. In this case the se-
quential information might be valuable. Figure 6 shows the
results of different n-gram classifiers for the two problems.

Two kinds of trends can be observed from the results. In
some cases the accuracy keeps increasing with N while in

Ie
D

is
pl

ay

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Threshold

A
cc

ur
ac

y

machine1
machine2
machine3
machine4
machine5

1.E+03

1.E+04

1.E+05

1.E+06

0 0.2 0.4 0.6 0.8 1

Threshold

D
im

en
si

on

machine1
machine2
machine3
machine4
machine5

1.E+00

1.E+01

1.E+02

1.E+03

0 0.2 0.4 0.6 0.8 1

Threshold

T
im

e
(s

ec
)

machine1
machine2
machine3
machine4
machine5

Sh
ar

ed
Fo

ld
er

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Threshold

A
cc

ur
ac

y

machine1
machine2
machine3
machine4
machine5

1.E+03

1.E+04

1.E+05

1.E+06

0 0.2 0.4 0.6 0.8 1

Threshold

D
im

en
si

on
machine1
machine2
machine3
machine4
machine5

1.E+00

1.E+01

1.E+02

1.E+03

0 0.2 0.4 0.6 0.8 1

Threshold

Ti
m

e
(s

ec
)

machine1
machine2
machine3
machine4
machine5

 (a) cross validation accuracy (b) dimension of feature vectors (c) duration of cross-validation

Figure 5. How the accuracy and efficiency of the classifier change with the threshold of noise filtering for single-
machine cross-time system call sequences of the two problems

the other cases the accuracy tops at 2-gram and then does
not change much or even goes down with higher n-grams.
For example, the accuracy of machine3 on SharedFolder
drops from 90.9% of 2-gram to 85.2% of 4-gram. Specifi-
cally, from the predicted classes of each root cause we find
that two root causes Disable and NoPermission which were
properly classified by 2-gram start to be frequently misclas-
sified to NoClient by 4-gram. This means there are some
important 2-gram features whose remaining discriminative
would depend on the diversity of its containing 4-grams.
Therefore, on some machines where such diversity is high,
the feature will be missing while on other machines where
such diversity is low the feature will be retained. In addition
the dissimilarity of the overall trends for the two problems
might suggest the optimal n-gram could be problem-specific.

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

N

A
cc

ur
ac

y

machine1
machine2
machine3
machine4
machine5

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

N

A
cc

ur
ac

y

machine1
machine2
machine3
machine4
machine5

(a) IeDisplay (b) SharedFolder

Figure 6. Accuracy of the data without thread names
changes with N-gram classifiers of different N

In summary, we have evaluated a variety of parameters that
can affect the result of classification in a single-machine
cross-time setting. We found that applying canonicalization
and higher n-gram has not brought any obvious positive
impact. The accuracy impact of the techniques like noise
filtering might be problem-dependent. However, it does
improve classification efficiency significantly. Sequential
order will help classification when thread name, parameters
and return value are not available. For the same problem,
the effect of some variations can differ across machines,
which may pose a challenge for cross-machine analysis. We
will compare these results with the cross-machine results in
the next section.

6.4 Cross-Machine Results
Cross-machine evaluation is of realistic importance because
it is unlikely a user machine is used for collecting training
data. In a cross-machine setting the training data and the
testing data are from two disjoint sets of machines. Similar
to the single-machine studies, we will measure what accu-
racy the classification method can achieve under various
conditions.

The data used in the section are collected from 20 machines
for the four problems. Unless specified, the results in this
section are obtained from 10-fold cross-validations where
10 machines are taken in turn from the 20 machines as train-
ing machines and four traces are used for each machine. We
still start with the 1-gram classifier.

Threshold. Figure 7 illustrates the accuracy, average feature
vector dimension, and time for cross-validation change with
the noise filtering threshold. We start with threshold 0.1
since threshold 0 will generate vectors with dimension rang-
ing from 160,000 to 540,000 which is too large for the
cross-validation to complete in a reasonable time.

Figure 7(a) shows that the accuracy of SharedFolder and
FfDisplay keeps almost unchanged, while that of IeDisplay
and OeOpen drops with the increasing of the threshold.

Figure 7(b) and (c) show that the dimension of feature vec-
tor and the time spent by cross-validation decrease exponen-
tially with the threshold, which makes it appealing to set a
proper threshold without sacrificing much accuracy. The
threshold in the remaining experiments in this section will
be fixed at 0.2.

Table 4. Effect of cross-machine canonicalization
 Before After
IeDisplay 82.45% 86.77%
SharedFolder 89.72% 89%
OeOpen 73.10% 85.20%
FfDisplay 72.25% 84.61%

Canonicalization. Table 4 compares the classification accu-
racy before and after canonicalization. We can see that the
canonicalization is very effective in improving the cross-
machine accuracy compared to the single-machine result.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Threshold

A
cc

u
ra

cy

IeDisplay
SharedFolder
OeOpen
FfDisplay

1.E+02

1.E+03

1.E+04

1.E+05

0 0.2 0.4 0.6 0.8 1

Threshold

D
im

en
si

o
n

IeDisplay
SharedFolder
OeOpen
FfDisplay

1.E+00

1.E+01

1.E+02

1.E+03

0 0.2 0.4 0.6 0.8 1

Threshold

Ti
m

e
(s

ec
)

IeDisplay
SharedFolder
OeOpen
FfDisplay

(a) cross-validation accuracy (b) dimension of feature vectors (c) duration of cross-validation

Figure 7. Accuracy and efficiency of the classifier with the increasing of noise filtering threshold for cross-machine
system call sequences of the four problems

SharedFolder can achieve equal accuracy before canonicali-
zation, which might be because its traces do no refer to ob-
ject names as diverse as those of the other three problems.
For example, Internet Explorer, Outlook Express and Fire-
fox may access numerous local files whose names can be
highly machine-dependent, while accessing a shared folder
may not need to do so. The remaining experiments in this
section will all use canonicalized data.

Higher n-grams. The results of 2-gram and 4-gram method
as shown in Table 5 do not have any obvious improvement
over the 1-gram result.

Table 5. Effect of higher n-grams for cross-machine
classification

 2-gram 4-gram
IeDisplay 87.64% 87%
SharedFolder 88.19% 88.25%
OeOpen 79.05% 71.55%
FfDisplay 83.52% 82.09%

We also tried another preprocessing method before extract-
ing n-grams. It simply sorts the trace records (already
grouped by threads) by the system call name. Stable sort is
used to retain the original relative order. The method is
based on the observation that the successive identical sys-
tem calls are likely responsible for the same aspect of a task
and therefore could be more coherent. Table 6 summarizes
the results with this method. The method does make some
improvement over the original results of 2-gram and 4-gram,
especially for the OeOpen case. However, the new accuracy
still has no notable difference.

Table 6. Effect of higher n-grams with sorting traces by
system call name before extracting n-grams

 2-gram 4-gram
IeDisplay 87% 88%
SharedFolder 88.58% 88.72%
OeOpen 82.50% 80.60%
FfDisplay 85.16% 83.14%

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

N

A
cc

u
ra

cy

IeDisplay
SharedFolder
OeOpen
FfDisplay

Figure 8. Cross-machine accuracy of the trace data

without thread names, parameters and return values
using various n-gram classifiers

No thread names, parameters and return values. The
result of these data classified with various n-gram classifiers

is given in Figure 8. It can be observed that after making
some improvement from 1-gram by 2-gram, the n-gram only
yields slight changes of accuracy with greater N, which
might suggest higher n-gram only capture marginal differ-
ence between root causes.

Convergence. One important question related to cross-
machine study is how many machines are needed for a clas-
sifier to achieve an optimal accuracy, which will determine
the effort of data collection for the classifier to be useful. In
practice we may only need to obtain a sufficiently high ac-
curacy. Intuitively the accuracy improvement with more
machines can be diminishing. This is supported by Figure 9,
where (a) is based on the results of the 1-gram classifier (on
full trace record) and (b) is based on the 2-gram classifier
which work on the data with trace record containing process
name and system call name only. Each data point corre-
sponds to the 10-fold cross-validation accuracy with the
specified number of machines used for training and the rest
ones used for testing. Here, four traces are used for each
machine. As can be seen, all the four problems follow the
similar trend that the accuracy converges to a value and be-
comes steady even when more training machines are added.
With 10 machines for training, the accuracy is usually close
to optimal.

 (a)

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Training Machine Number

A
cc

u
ra

cy

IeDisplay
SharedFolder
OeOpen
FfDisplay

(b)

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

Training Machine Number

A
cc

ur
ac

y

IeDisplay
SharedFolder

OeOpen
FfDisplay

Figure 9. Accuracy grows more and more slowly with

increasing number of machines used for training

The highest accuracy the two methods can achieve in this
convergence test is listed in the following table. Comparing
the highest accuracy of the two classifiers, we can see that
the first one gives slightly better results, which is attributed

to the relatively low accuracy on FfDisplay of the second
classifier.

 IeDisplay SharedFolder OeOpen FfDisplay
(a) 90.68% 90.28% 88.25% 88.98%
(b) 90.68% 89.03% 90.75% 81.48%

To summarize, our main findings in this section are: (1)
Canonicalization is very effective on cross-machine classifi-
cations when there are parameters containing object names
in trace records; (2) 1-gram classifier is usually good
enough for such data. Using higher n-grams does not make
notable improvement; (3) when only process names and
system call names are available in traces higher n-gram
classifiers play a critical role in providing competitive accu-
racy with (2); (4) The average accuracy converges with
more machines used for training. Overall, we find the two
methods we investigated can achieve considerably high ac-
curacy.

7. DISCUSSION
In this section we discuss some fundamental questions about
this approach.

7.1 Error Reporting by Programs
A direct argument against our post-priori approach is that if
it is possible to distinguish the root causes of a problem
from the running behavior of the program, the developer
should be able to change the program instead to handle the
probably overlooked error and give more detailed report.
However, it may not always be possible for the program to
determine the root cause of an error and its resolution. And,
sometimes the error detection and handling may reside in
another component beyond the control of the component
making use of it. Furthermore, for some low-level compo-
nents shared by high-level applications (such as networking),
handling of their errors in each application would result in
many duplications of the same code. In addition, our method
can support already released products without the need to
update deployed instances.

Another argument against using system behavior informa-
tion to characterize problems is that it could be more accu-
rate and direct to use program-generated signatures such as
error codes to make correlations to problem knowledge.
Besides the analogous counter-arguments mentioned above,
the decision on where to generate signatures would also
require effort of developers, especially for those problems
not caused by system errors. In addition, we also plan to
apply this method to performance troubleshooting in which
root causes are even harder to detect within programs.

7.2 Automatic Symptom Reproduction
We use automatic symptom reproduction not only for user
convenience but also to restrict the way reproduction occurs.
The user can browse a Web page in many ways, such as
click a hyperlink, type a URL, go to the homepage, etc.
Each way of reproduction may have different low-level con-

sequences though the high-level symptom could be the same.
Moreover, the difference of the consequence could depend
on root causes. Instead of enumerating all possible ways of
reproduction and take them into account in data collection,
we believe using a restricted but automatic reproduction is
more reasonable and hopefully the accuracy could also be
more stable. Of course the overhead is that an automation
script needs to be authored for each problem and sometimes
it is also non-trivial to reliably reproduce a symptom. The
good effect is that training data can be more readily ob-
tained. And, where such automation is not possible, we can
still resort to manual reproduction.

8. RELATED WORK
8.1 Automated Diagnosis
Perhaps the work closest to ours in spirit is [20]. The au-
thors argue that a global knowledgebase associated with rich
system information will help to automate diagnosis process.
Though several types of automatically generated data are
proposed, there is no data analysis method and quantitative
experiment showing how the data can be useful for diagno-
sis. [13] presents a method for generating signatures from
system states to help identify recurrent problems and lever-
age existing diagnosis knowledge. In this paper we focus on
using system event traces to help identify root causes of
known problems, but we believe our study would also be
valuable in advocating other behavior information. Our goal
of automated diagnosis is also similar to Autonomic Com-
puting [17] that attempts to make system self-healing by
detecting, diagnosing, and repairing problems automatically.

[5] attempts to automate the diagnosis process that is usu-
ally performed by human experts: system health monitoring
and error detection, component sanity checking, and con-
figuration change tracking. The authoring of the detection
and checking rules and logics would require the knowledge
of human experts. For example, deciding if the Outlook
Express mailbox file is damaged (i.e. DbxDamaged in Table
1) would need the same level of understanding of the mail-
box file format as the developers have.

8.2 Learning from System Behavior
Pinpoint [10][11] employs statistical learning techniques to
diagnose failures in a Web farm environment. After the
traces with respect to different client requests are collected,
some data mining algorithms are applied to determine the
components most relevant to a failure. The main difference
from our work is that Pinpoint intends to recognize what
part of the existing traces contributes most to a failure. But
our goal is to predict what class of failure a new trace be-
longs to from the knowledge of the failure categories of
prior traces.

Magpie [7][6] aims to analyze performance of distributed
systems. A behavior model annotated with resource usage
information is constructed after the event traces are clus-

tered by edit distance, which can then be used to understand
where the performance bottlenecks are. On the contrary, the
traces in our work are used for classification instead of clus-
tering.

Aguilera et al. [1] attempts to locate the node of perform-
ance bottlenecks in a distributed system with only inter-
node communication traces so as to avoid application-level
instrumentation required by the above methods. The main
work there is to infer the causal paths in the system from
such traces such that the node causing extraordinary delay
can be detected.

Cohen et al. [12] also uses learning classifier to make pre-
diction of compliance with performance objectives and help
analyze the cause of the violation in Web server systems.
However, the input data used there are statistical metrics
summarizing the system behavior or state rather than the
behavior itself as used in our approach. Another difference
is that the target of our classification is the root cause of the
problem among many possible candidates, while [12] uses
classifiers to make binary decision on whether a criterion
might be violated and determine the root cause from the
induced model of dependencies between the metrics. Simi-
lar to our work, the candidate root causes would be limited,
in that case to the observed metrics. Finally, the high-level
goal of automating diagnosis by learning from observations
of the system with statistical methods is common.

Some host-based intrusion detection systems (IDS) use se-
quences of system calls [16][18][29] (or a subset [2]) as
well. Besides having the common theme of taking advan-
tage of past system behaviors to recognize new behavior as
our method, there are a number of differences. First, the
main objective of IDS is to detect anomalous behavior re-
sulting from external, probably unknown attacks. An attack
can happen at any moment, so it should be detected as soon
as possible. The goal of this paper is to distinguish different
kinds of abnormal behaviors caused by various unintended
but known faults in a cooperative environment. Here, it is
known (or assumed) that the application has already be-
haved abnormally and what caused it is of more interest. In
addition, the abnormal behavior usually happens only when
the user requests a specific service from the application.
Second, training data used in IDS are usually collected from
normal executions of the target application. In this paper
training data are created from various faulty runs as well as
normal runs of the application. Third, the difference in the
goals and input data also makes the algorithms used by the
two methods different, although the model used to represent
the input data, that is, local pattern of system calls, is similar.
In IDS a model of the application is built first and then new
system calls are checked for consistency with the model.
Since our scheme can be formulated as a classification prob-
lem, we choose to use the popular classification algorithm
SVM. Fourth, false positive rate is an important metric to
evaluate IDS. For problem diagnosis we pay attention to

accuracy of fault prediction instead because it is not the re-
sponsibility of our system to tell if the application is normal
or not. However, in the paper we did include normal behav-
ior among other faults in the evaluation and the results show
that the normal traces can be recognized accurately as well.

8.3 Other Fault Localization Techniques
[4][21] exploit program running traces to localize bugs by
comparing an error trace with correct traces. The idea can be
applied in this scenario to isolate the component that is rele-
vant to the deviation of the trace from a normal trace. Since
the traces are usually obtained in a black box way, the
granularity of isolation would depend on how detailed the
system running behavior is revealed. Furthermore, the suc-
cess of the method still relies on the assumption that the
fault lies exactly at the branching point of an abnormal trace,
which does not hold when the control flow change is not
caused by an immediate state change.

Fault localization in computer networks has a close goal to
find the root cause from a set of observed symptoms [24].
The codebook technique [33] is similar to our classification
approach in exploiting the correlation of the observed events
and the root causes. However, the fault localization there
requires a prior specification of causality graph which re-
quires the knowledge of dependencies among system com-
ponents. In our approach we use the passively and automati-
cally monitored events to build the correlation.

9. CONCLUSION
We have proposed a new method to diagnose known prob-
lems with system behavior information. Specifically, we
correlate traces of system calls captured during symptom
reproductions to problem root causes and apply statistical
learning technique on traces and correlations to predict root
causes of new occurrences of problems with their corre-
sponding traces in context.

We have evaluated our approach with four problems with
diverse root causes and find it can achieve considerable ac-
curacy. With the noise filtering and canonicalization rules
devised based on the observations of system call change
patterns, we experimented with various methods and options
on the traces collected from a number of real machines and
the resulting accuracy of root cause detection is nearly 90%.

We think our approach is a necessary step to enable auto-
mated diagnosis of known problems. The system informa-
tion in the problem context should not be missed in the di-
agnosis process. By mining these data with statistical meth-
ods, we can draw useful features that would significantly
improve the efficiency of today’s diagnosis process.

Besides system calls chosen in this paper, I/O requests such
as network communications are also an important aspect of
system behavior. We plan to extend the tracer to capture
additional kinds of events and evaluate their contribution to
diagnosing other problems with our approach.

Currently, the symptom of the problem needs to be repro-
duced before the root cause detection. Sometime it is not
convenient for the user or it may not be possible. The step
can be avoided with an always-on tracer. However, the chal-
lenge then would be pinpointing the most relevant piece of
the trace.

10. ACKNOWLEDGEMENTS
We would like to thank Hu Chen for collecting trace data in
the earlier experiments and Yankai Xu for writing automatic
data collection scripts. We are also grateful to our shepherd,
Leendert Van Doorn, and the anonymous reviewers for their
helpful comments.

11. REFERENCES
[1] M.K. Aguilera, J.C. Mogul, J. Wiener, P. Reynolds, and A.

Muthitacharoen. Performance debugging for distributed
systems of black boxes. In the 19th ACM Symposium on
Operating Systems Principles, October 2003

[2] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S.J. Stolfo.
Detecting Malicious Software by Monitoring Anomalous
Windows Registry Accesses. In Proceedings of the Fifth
International Symposium on Recent Advances in Intrusion
Detection (RAID-2002). Zurich, Switzerland, October 2002

[3] AutoMate. http://www.unisyn.com/automate/
[4] T. Ball, M. Naik, and S. Rajamani. From Symptom to Cause:

Localizing Errors in Counterexample Traces. POPL 2003
[5] G. Banga. Auto-Diagnosis of Field Problems in an Appliance

Operating System. USENIX Annual Technical Conference,
San Diego, California, USA, June 2000

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modelling. 6th
Symposium on Operating System Design and Implementation
(OSDI), December, 2004

[7] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie:
Online Modelling and Performance-aware Systems. 9th
Workshop on Hot Topics in Operating Systems, 2003

[8] W.B. Cavnar and J.M. Trenkle. N-gram Based Text Catego-
rization, Proceedings of the Third Annual Symposium on
Document Analysis and Information Retrieval, April 1994

[9] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support
vector machines. September 2002. Available at
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

[10] M. Chen, A. Accardi, E. Kiciman, A. Fox, D. Patterson, and
E. Brewer. Path-based Failure and Evolution Management.
USENIX/ACM Symposium on Networked Systems Design
and Implementation, San Francisco, CA, March 2004

[11] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer.
Pinpoint: Problem Determination in Large, Dynamic Systems.
International Conference on Dependable Systems and
Networks, IPDS track, Washington, DC, June 2002

[12] I. Cohen, J. Chase, M. Goldszmidt, T. Kelly, and J. Symons.
Correlating Instrumentation Data to System States: A
Building Block for Automated Diagnosis and Control. 6th
Symposium on Operating Systems Design and
Implementation (OSDI '04), December 2004

[13] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox. Capturing, Indexing, Clustering, and Retrieving
System History. In the 20th ACM Symposium on Operating
Systems Principles, October 2005

[14] T.G. Dietterich and G. Bakiri. Error-correcting output codes:
a general method for improving multiclass inductive learning
programs, in the proceedings of AAAI-91, pages 572-577.
AAAI press / MIT press, 1991

[15] D. Gusfield. Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, January 1997

[16] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection
Using Sequences of System Calls. Journal of Computer
Security, Vol. 6, pp. 151-180, 1998

[17] J.O. Kephart and D.M. Chess. The Vision of Autonomic
Computing. IEEE Computer, January 2003

[18] W. Lee and S. Stolfo. Data Mining Approaches for Intrusion
Detection. In Proceedings of the Seventh USENIX Security
Symposium, San Antonio, TX, January 1998

[19] J.R. Lorch and A.J. Smith. The VTrace Tool: Building a
System Tracer for Windows NT and Windows 2000. MSDN
Magazine, October 2000

[20] J.A. Redstone, M.M. Swift, and B.N. Bershad. Using
Computers to Diagnose Computer Problems. 9th Workshop
on Hot Topics in Operating Systems (HotOS IX), Lihue,
Hawaii, May 2003

[21] M. Renieris and S. Reiss. Fault Localization with Nearest
Neighbor Queries. ASE 2003

[22] M. Russinovich and B. Cogswell. Windows NT System Call
Hooking. Dr. Dobb's Journal, January 1997

[23] D.A. Solomon and M.E. Russinovich. Inside Microsoft
Windows 2000, 3rd Edition. Microsoft Press, September 2000

[24] M. Steinder and A.S. Sethi. A Survey of Fault Localization
Techniques in Computer Networks. Science of Computer
Programming, Special Edition on Topics in System
Administration Vol. 53, 2 (Nov. 2004), pp. 165-194

[25] Strace for NT.
http://www.bindview.com/Services/RAZOR/Utilities/Windo
ws/strace_readme.cfm

[26] C.Y. Suen, N-Gram Statistics for Natural Language Under-
standing and Text Processing., IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, Vol. 1, No. 2, April 1979

[27] V. Vapnik. Principles of risk minimization for learning
theory. In D.S. Lippman, J.E. Moody, and D.S. Touretzky,
editors, Advances in Neural Information Processing Systems
3, pp. 831-838. Morgan Kaufmann, 1992

[28] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H.J. Wang,
C. Yuan, and Z. Zhang. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management and
Support. Proc. Usenix LISA, pp. 159-172, Oct. 2003

[29] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. IEEE
Symposium on Security and Privacy, 1999

[30] A. Whitaker, R.S. Cox, and S.D. Gribble. Configuration
Debugging as Search: Finding the Needle in the Haystack. 6th
Symposium on Operating System Design and Implementation
(OSDI), December, 2004

[31] Windows XP System Restore.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwxp/html/windowsxpsystemrestore.asp

[32] WPP Software Tracing.
http://www.microsoft.com/whdc/devtools/tools/EventTracing.
mspx

[33] A. Yemini and S. Kliger. High Speed and Robust Event
Correlation. IEEE Communication Magazine 34,5 (May
1996), 82-90

