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Abstract—As dynamic content becomes increasingly dominant, it becomes an important research topic as how the edge resources

such as client-side proxies, which are otherwise underutilized for such content, can be put into use. However, it is unclear what will be

the best strategy, and the design/deployment trade offs lie therein. In this paper, using one representative e-commerce benchmark, we

report our experience of an extensive investigation of different offloading and caching options. Our results point out that, while great

benefits can be reached in general, advanced offloading strategies can be overly complex and even counterproductive. In contrast,

simple augmentation at proxies to enable fragment caching and page composition achieves most of the benefit without compromising

important considerations such as security. We also present Proxy+ architecture which supports such capabilities for existing Web

applications with minimal reengineering effort.

Index Terms—Edge caching, offloading, dynamic content, fragment caching, page composition.
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1 INTRODUCTION

DYNAMIC pages will dominate the Web of tomorrow.
Indeed, one should stop talking about dynamic pages

but, instead, dynamic content. This necessitates architectural
change in tandem. In particular, resources that are already
deployednear the client such as theproxies that areotherwise
underutilized for such content should be employed.

Legitimate strategies include offloading some of the
processing to the proxy or simply enhancing its cache
abilities to cache fragments of the dynamic pages and
perform page composition. While performance benefits
including latency and server load reduction are important
factors to consider, issues such as engineering complexity as
well as security implication are of even higher priority.
Although there have been extensive research on the subject
of optimizations for dynamic content processing and
caching, we still lack the insight on what will be the best
offloading and caching strategies and their design/deploy-
ment trade offs.

In this paper, using a representative e-commerce bench-
mark, we have extensively studied many partitioning
strategies. We found that offloading and caching at edge
proxy servers achieves significant advantages without
pulling databases out near the client. Our results show
that, under typical user browsing patterns and network
conditions, two to three folds of latency reduction can be
achieved. Furthermore, more than 70 percent of server
requests are filtered at the proxies, resulting in significant
server load reduction. Interestingly, this benefit can be
achieved largely by simply caching dynamic page frag-
ments and composing the page at the proxy. In fact,
advanced offloading strategies can be overly complex and

even counterproductive performance wise if not done
carefully. Our investigation essentially boils down to one
simple recommendation: If end-to-end security is in place
for a particular application, then offload all the way up to
the database; otherwise, augment the proxy with page
fragmentation caching and page composition. While our
results are obtained under the .NET framework, we believe
they are generic enough to be applicable to other platforms.

The rest of the paper is organized as follows: Section 2
covers related work. Various offloading and caching
options are introduced in Section 3, which also discusses
important design metrics. Section 4 examines the bench-
mark used and also some of the most important .NET
features employed. Detailed implementations of the off-
loading/caching options are discussed in Section 5. Section 6
describes the experiment environment. Results and analysis
are offered in Section 7. Section 8 describes Proxy+
architecture which supports dynamic content caching with
minimal engineering overhead for existing applications.
Finally, we summarize and conclude in Section 9.

2 RELATED WORK

Optimizing dynamic content generation and delivery has
been widely studied. The main objectives are to reduce
client response time, network traffic, and server load caused
by surges of high volume of requests over wide-area links.
Most work focuses on how to support dynamic content
caching on server side [9], [10], [19]. Some others also
extend their cache to the network edge and show better
performance results [11]. Fragment caching [3], [4] is an
effective technique to accelerate current Web applications
which usually generate heterogeneous content with com-
plex layout. It is provided by today’s common application
server product like Microsoft ASP.NET [14] and IBM
WebSphere Application Server [7]. ESI [5] proposes to
cache fragments at the CDN stations to further reduce
network traffic and response time.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 12, DECEMBER 2004 1

. The authors are with Microsoft Research Asia, 5F Sigma Center, #49
Zhichun Road, Beijing, 100080, China 86-10-62617711.
E-mail: {cyuan, ychen, zzhang}@microsoft.com.

Manuscript received 26 Oct. 2003; revised 1 Apr. 2004; accepted 8 Apr. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0203-1003.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



Application offloading is another way to improve
performance. In Active Cache [2], it is proposed that a
piece of code be associated with a resource and be
cacheable, too. The cache will execute the code over the
cached object on behalf of the server and return the result to
the client directly when the object is requested at a later
time. With the blurring of application and data on current
Web, this scheme becomes less effective since Web page
generation and delivery involve the most overhead and a
Web page is typically constructed from specific data sources
rather than from a Web resource. To do more aggressive
application offloading, WebSphere Edge Services Architec-
ture [8] suggests that portions of the application such as
presentation tier and business logic tier be pushed to the
edge server and communicate with the remaining applica-
tion at the origin server when necessary via the application
offload runtime engine. Gao et al. [6] proposed to take
advantage of application semantics to replicate some data
objects to the edge server and observed significant
performance improvement while maintaining reasonable
consistency. This is an instance of pushing database tier
(partially) to the edge, though in an opaque way. An
extreme case of offloading is given by [1]. The full
application is replicated on the edge server and database
accesses are handled by a data cache which can cache query
results and fulfill subsequent queries by means of query
containment analysis without going to the backend.

We focus on the proxies that are already installed near
clients. We also examine exclusively offloading and caching
of anything other than the database content, as we believe
mature technologies to manage hard states in a scalable
fashion across wide-area are yet to be developed. To the
best of our knowledge, we are the first to report design and
implementation trade offs involved in devising partitioning
and offloading strategies, along with detailed evaluations.
There also has been no work evaluating offloading versus
advanced caching mechanisms. Finally, this is the first work
we know of that experiments with the .NET framework in
this aspect.

3 OFFLOADING AND CACHING OPTIONS

ENUMERATED

There are a number of issues to be considered for
distributing, offloading, and caching dynamic content
processing and delivery. They are:

1. available resources and their characteristics,
2. the nature of these applications, and
3. a set of design criteria and guidelines.

In this section, we discuss these issues in turn.

3.1 Resources Where Offload can be Done

Fig. 1 shows graphically various resources involved.
Client. As a user-side agent, client—typically a brow-

ser—is responsible for some of the presentation tasks and it
can also cache some static contents such as images, logos,
etc. The number of clients is potentially many; however,
they usually have limited capacities and are (generally
speaking) not trusted.

Proxies. In terms of scale, proxies come second. Proxies
are placed near the clients and are thus far from the server
end. The typical functionalities of proxies include firewall,
and caching of static contents. They are usually shared by

many clients and are reasonably powerful and stable.
However, except the case of intranet applications, content
providers do not have much control over them.

Reverse Proxies. Reverse proxies are placed near the
back-end server farm and act as an agent of the application
provider. They serve the Web request on behalf of the back-
end servers. Content providers can fully control their

behaviors. However, the scale of reverse proxies only goes
as far as a content provider’s network bandwidth allows. In
this paper, we consider them as part of the server farm.

Server. Servers are where the content provider has the
full control. In the context of this section, we speak of
“server” as one logical entity. However, as it shall be clear
later, “server” itself is a tiered architecture comprised of

many machines and hosting the various tiers of the Web
application.

As far as dynamic content is concerned, typically, only
the servers and clients are involved. Proxies, as of today, are
incapable of caching and processing dynamic content. In
this discussion, we have also omitted CDN stations as we

believe they can be logically considered as an extension of
either proxies or reverse proxies. Some of the more recent
progresses have been discussed in the Section 2.

3.2 Application Architecture and Offloading
Options

Logically, most of the Web applications can be roughly
partitioned into three tiers: presentation, business logic, and
back-end database. The presentation tier collects users’
input and generates Web pages to display results. The
business logic tier is in charge of performing the business
procedure to complete users’ requests. The database tier

usually manages the application data in a relational
database.

Based on the three-tier architecture, N-tier architecture is
also possible. The most complex tier in a Web application is
the business logic tier. This tier performs application-
specific processing and enforces business rules and policies.

Because of its complexity, the business logic tier itself may
be partitioned into smaller tiers, evolving into the N-tier
architecture.
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Application partitioning and offloading can be applied
based on the tier structure of the Web application. Without
loss of generality, we only consider the Web browser as the
application client here. From the back-end database to
browsers, we can find several candidate partition places as
shown in Fig. 2.

The first partition place is the database access interface.
The ODBC, JDBC, ADO, etc., are this kind of interface.
Current applications use connection strings to specify the
database server to be accessed. It is possible to point to a
specific remote machine in the connection string.

The second partition place is at the data access layer
inside the business logic tier. Because of the complexity of
the business logic, it is a common practice to develop a set
of database access objects to shield the detail inside the
database. Other business logic objects can access data
through these objects using simple function calls. The
clear-cut boundary at this layer makes it a good candidate
of partition point for offloading.

The third partition place is between the presentation tier
and the business logic tier. The presentation tier gathers the
user input and translates the user request into a processing
action at the business layer. The business tier usually
provides a single-call interface for each type of requests.
The clearly defined interface here provides strong clues for
partition.

The fourth partition place is inside the presentation tier.
The Web pages generated by the application are structur-
alized and split into fragments, each of which has consistent
semantic meaning and lifetime. The back-end servers
provide page fragments and composition frameworks.
The entire Web page is assembled at the offloading
destination. ESI [5] is a good example of this strategy.

Of course, what we have enumerated here is only a
starting point. Specifically, within the business logic tier
there can be multiple logically legitimate offloading points.
However, as we should discuss later, advanced offloading
strategies often risk high complexity without a clear benefit
in return.

3.3 Important Factors to be Considered When
Offloading

Having discussed various resources upon which offloading
and caching can be performed, and various partitioning
strategies, the actual implementation and deployment must
consider a number of important factors. In our opinion, the

following three are the most important ones: security,
complexity, and performance:

1. Security. Sensitivity of data as well as processing
that are to be offloaded may vary. A given piece of
data and processing can be distributed as far as its
security perimeter permits. This is one reason why
we are concerned with who controls what in the
resource distribution earlier. Enforcing security end-
to-end only applies to certain Web applications (e.g.,
intranet) and pays a cost (e.g., VPN overhead) in
return.

2. Complexity. Another factor that should be consid-
ered is the engineering cost. Although Web applica-
tions are developed according to three-tier or N-tier
architecture, the tier boundaries are usually not
clear. This problem is obvious for the tiers that are
part of the business logic in an N-tier application.

Even if the tier boundaries are clear, the im-
plementation still cannot be fully automated. For
example, application partitioning usually requires
transforming some of the LPCs (local procedure call)
into RPCs (remote procedure call). Because most of
the runtime systems do not support migrating LPC
to RPC transparently, source code modification,
recompilation, and subsequent testing are necessary.
If synchronous procedures calls are to be changed to
asynchronous calls, the implementation efforts
would be even greater.

3. Performance. Even when resources such as proxies
are freely available, distributing the processing and
caching must bring significant benefits to justify the
additional complexity involved. End user’s latency
as well as improvement of scalability are the primary
metrics. On this, the network condition is the first
critical factor to be considered. Generally speaking,
the communication quantity across the partition
should be minimized on low bandwidth networks.
Likewise, for high latency networks, the frequency
of synchronous communication should be reduced.
In general, a useful guideline to start with is that the
communication channel over a wide area network
should be lightweight and stateless.

4 THE PET SHOP BENCHMARK

In order to evaluate different offloading options, we use
Microsoft .NET Pet Shop as our benchmark. It comes from
Sun’s primary J2EE blueprint application, the Sun Java Pet
Store [18] and models a typical e-commerce application, an
online pet store. E-commerce sites like this are among the
most common Web applications.

Pet Shop is implemented using ASP.NET, and the source
code is freely available at [12]. ASP.NET brings several
important optimizations and the two of them, stored

procedure and output caching, will be discussed in the
following sections.

4.1 Pet Shop Architecture

The complete three-tier architecture of Pet Shop is described
in the white paper at [12]. To illustrate the design, we will

YUAN ET AL.: EVALUATION OF EDGE CACHING/OFFLOADING FOR DYNAMIC CONTENT DELIVERY 3

Fig. 2. The 3-tier architecture and partition places.



look at an example of the interaction between the three tiers
as shown in Fig. 3.

The presentation tier communicates with browsers di-
rectly. It contains Web Forms pages (aspx files), Web Forms
user controls (ascx files), and their code-behind classes (in
namespace PetShop.Web). Similar to the ASP and JSP
page, Web Forms pages represent dynamic pages. The Web
Forms user controls represent portions of Web Forms pages
and, thus, cannot be requested independently. While the
aspx and ascx files contain the visual representation, the
code-behind classes contain processing logic. When a
request arrives, the specified Web Forms page and Web
Forms user controls are loaded. The corresponding code-
behind objects responsible for generating responses will
initiate calls to the business logic tier for request processing
(arrows in Fig. 3).

The objects in the business logic tier (in namespace
PetShop.Components) accept invocations from the pre-
sentation tier. If the processing does not require database
interaction, for instance, displaying shopping cart content,
results are returned right away. Otherwise, the business
logic objects will generate database queries through a
specific database access class (PetShop.Components.
Database). Instances of this class set up database connec-
tions, pass database queries through ADO.NET interfaces,
and return query results to upstream.

The database tier consists of application data and stored
procedures. A stored procedure is used to encapsulate a
sequence of SQL queries which complete a single task.
Using stored procedures, interactions between the business
logic tier and the database tier can be reduced, thus
increasing performance. For instance, placing an order
normally requires several calls between the business tier
and the back-end database. With stored procedure, an order
can be encoded into a string and transferred to the database,
where the string is decoded and multiple SQL statements
are issued to complete the order. From this perspective,
most of the Pet Shop stored procedures are essentially part of
the business logic tier. They are included in the database
tier simply because they are stored and are executed in the
SQL server. This is one example where the boundaries of
tiers get blurred.

4.2 ASP.NET Output Caching

The.NET Pet Shop leverages ASP.NET output caching to
increase throughput and reduce server load [13]. A similar

function is also provided by other products such as IBM
WebSphere’s response cache [7], [8]. When a page is
requested repeatedly, the output caching allows subsequent
requests to be satisfied from the cache so the code that
initially creates the page does not have to be run again.
Besides caching the entire page, ASP.NET allows Web
Forms user controls to be cached separately. As we will
explain in detail in Section 5.3, this feature of fragment
caching is what we employ to enhance caching capability at
the proxy side.

ASP.NET provides duration and versioning control for
each cached entity (Web Form and Web Form user control).
Duration specifies the lifetime of a cached page. Versioning
allows caching multiple result pages or page fragments for
a single form or control. For example, Product.aspx

produces different result pages for different products.
Storing a single result page in output cache can hardly
gain any benefit since users tend to browse different
products. By keeping multiple result pages, the most
frequently accessed pages will be cached eventually, saving
large amounts of processing time.

5 EXPERIMENT PREPARATION

In this section, we discuss in detail how different offloading
and caching strategies are implemented in Pet Shop.

According to the partition points in Section 3.3, the
following offloading options are investigated: F0, Fdb,
Fremoting, and Fproxy. They are shown in Fig. 4; the legends
are:

. B: Browser,

. A: Page Assembling and Fragment Caching,

. G: Fragment Generation,

. P: Presentation,

. L0: Business Logic except Data Access Layer,

. DA: Data Access Layer,

. L: Business Logic,

. DB: Database, and

. Cloud: Wide Area Network.

The base line is F0 which leverages neither processing
nor caching abilities of proxies. By pushing fragment
caching and page assembly to the proxy, we get Fproxy

which corresponds to partition place 4. By offloading the
presentation tier to proxies, Fremoting2 implements partition
point 3. Fremoting1 and Fdb are similar except that Fremoting1

leaves the data access layer at back-end servers while Fdb
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offloads the complete business logic tier. Therefore, they

correspond partitioning points 2 and 1, respectively.
We use proxy and front end, and server and back end

interchangeably in this paper for all configurations other

than F0.

5.1 Implementing Fdb

The implementation of Fdb is trivial: All we need to do is

modify the connection string of the database access inter-

face. The connection string is changed from the default

value “server = localhost; ...” to “server = some

other machine; ...” so that the front end is forced to access

the remote machine hosting the SQL server.

5.2 Implementing Fremoting

The Fremoting option investigates different ways of off-

loading inside the business logic tier, in particular, the

partition points 2 and 3 (see Fig. 2). We employ the .NET

Remoting feature to accomplish this task, which we will

discuss first.

5.2.1 .NET Remoting

Microsoft .NET Remoting provides a rich and extensible

framework for objects living in different application

domains, in different processes and in different machines

to communicate with each other seamlessly. The framework

considers a number of matters, including object passing,

remote object hosting strategy, communication channel, and data

encoding.
Objects can be passed either by reference or by value:

. By value. Objects that would cross application
domain boundary, such as the object b in Fig. 5,
can be passed by value. In .NET Remoting, pass-by-
value objects are all marked with Serializable attri-
bute.

. By reference. Objects that reside in only one
application domain and provide interfaces to other
applications are passed by reference (such as the
object a in Fig. 5). In .NET Remoting, pass-by-
reference objects should be derived from a system
class MarshalByRefObject.

For a pass-by-reference object, .NET Remoting provides

three hosting strategies to support object activation and

lifetime management:

. SingleCall objects’ activation and lifetime are deter-
mined by server. They service one and only one

request coming in, i.e., different client requests are
services by different objects.

. Singleton objects’ activation and lifetime are also
determined by server. Unlike the SingleCall objects,
Singleton objects service multiple clients and share
data by storing state information between client
invocations. There is only one singleton object
instance of a given class at the server side.

Client-activated objects’ (CAO) activation and life-
time are determined by client. The server creates an
object upon an activation message from client. The
object services for the client until the client allows it
to be released. If the communication between server
and client is stateful, CAO should be used.

For a more in-depth treatment of these hosting strategies,
please refer to [16].

RPC requests and responses are encoded into formatted
messages and transferred over a communication channel. In
Fig. 5, when object c makes a call to object a, the request
(including object b as the parameter) is encoded and
transferred to the server side. At the server side, the
message is decoded and an actual call to object a is made.

5.2.2 Detailed Implementation

As explained earlier, in Fremoting, we try to partition the
application in the logic tier. While there may be many
different options, as an extensive exercise, we investigate
how to partition at point 2 which separates the data access
layer from other business logic layers, and point 3 which is
located between the presentation tier and the business logic
tier (see Figs. 2 and 4).

Regardless of the specific partition strategy, the task in
this configuration is always to replace LPC (Local Proce-
dure Call) with RPC (Remote Procedure Call). This entails a
few steps. The first is to determine the locations of classes to
be run as mandated by a given partitioning strategy (server
or proxy) and from there derive the RPC boundaries. The
second step is to modify the application source code so that
RPC can take effect. Finally, the hosting strategy for objects
at server side and communication channel between server
and proxy are decided.

Partition place 2 requires the least amount of engineering
efforts in that there is only one class to be modified—Da-

tabase in namespace PetShop.Components. The Da-

tabase objects run at server side and provide interfaces for
the other logical tier objects to access information in the
back-end database. Thus, they are pass-by-reference objects.
For each user request, the responsible logic tier object at
proxy side needs to issue multiple procedure calls to server
(as shown in Fig. 6a). Because these calls are related to each
other, the state information along the call sequence should
be maintained. On the other hand, different user requests
need exclusive objects to provide services. Therefore, the
only hosting strategy is CAO. This strategy turns out to
have a dramatic performance impact: Our test runs reveal
that the benchmark now performs much worse than not
offloading at all. The reason is that multiple RPCs
corresponding to a single-user request results in multiple
round trips between proxy and server. Consequently,
partition point 2 is not a good offloading option for Pet
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Shop. The lesson we learned here is that, under a given
partition strategy, the logical constraint and performance
constraint may be very much in conflict with each other.
What makes this matter even more complex is that this is
also application dependent.

Partition point 3 works but with a rather involved
manual examination of all candidates. Specifically, all
classes in namespace PetShop. Components except
Error and Database are affected.1 Some of them will
reside at server side only and act as pass-by-reference
remote objects, such as Item, Profile, Order, Customer,
and Profile. The others are pass-by-value objects that will
travel between proxy and server, such as ShoppingCart,2

BasketItem, ItemResults, ProductResults, and
SearchResults (actually, they are all RPC parameters
or responses). With this strategy, the proxy needs to issue
only one RPC for each user request in most cases and no
state information is going to be shared among different
RPCs (as shown in Fig. 6b). Moreover, because the objects of
Item, Profile, Order, Customer, and Profile do not
store state data,3 there is no difference whether distinct user
requests are processed by a shared object or exclusive and
different ones. Therefore, all the three hosting strategies are
eligible. We conducted an experiment to compare the
performance of all of them under the same test condition
(as shown in Table 1) and found that SingleCall and
Singleton outperforms CAO significantly. In the experiment,
we notice that, under the same conditions, the memory
consumption and CPU load on server for CAO is higher
than that for SingleCall and Singleton. This may be due to

the fact that the server no longer can perform aggressive
garbage collection as it can in the other two options.

In the following sections, Fremoting will refer to Fremoting2
using Singleton only. While we did arrive at an adequate
partition strategy in the business logic tier for Pet Shop (see
performance results in Section 7), our experience pointed
out that this is a rather complex process and, even though it
is possible to derive a consistent set of guidelines, it will be
quite a challenge to perform automatic partitioning.

5.3 Implementing Fproxy

As we described earlier, the goal of Fproxy is much more
modest: Augment the proxy cache so that it can cache
fragments and perform dynamic page assembly. Recall that
the objects in the presentation tier of the original Pet Shop are
divided into two parts: container pages (Web Forms) and
fragments (Web Form user controls). Each container page
includes placeholders of some fragments.4 Their contents,
either obtained from the output cache or generated afresh
upon a miss, are to be inserted into the container at runtime
to compose a complete Web page.

The flow of Fproxy is shown in Fig. 7. In order to
accomplish this task, we need to 1) replicate the tier
responsible for output caching and page assembly at the
front end and 2) make a back-end version of Pet Shop which
is the real generator of content.

The back-end version is implemented in two steps. First,
we make each fragment be able to be separately retrieved
with a URL like a common Web page. Then, in their
container pages, we replace the fragment’s placeholder with
a special tag that will not be interpreted by ASP.NET, but
indicate to the front end that it is to be expanded with the
content of a fragment.

We create another application to play the role of
output caching and page assembly at the front end. This
application has the same set of pages and fragments as
Pet Shop and their containment relationships are also
maintained, but no actual content is included. When a
page is loaded, the container page and the nested
fragments will be loaded in turn. What they actually do
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TABLE 1
Comparison of Singleton, SingleCall, and CAO

Fig. 7. Page fragment composition.

Fig. 6. Flow examples of partition place (a) 2 and (b) 3.

1. Error objects are responsible for reporting local errors. Although
Database objects reside at the server side, they do not provide interfaces
for proxy any more in this option.

2. Actually, ShoppingCart will access database in Cart.aspx when
updating the shopping cart information. To deal with it, we modify
Cart.aspx and Order to ensure that the update would be executed on
server.

3. In the C# source code, these five classes have no member variables.
4. The container object of a fragment can be a fragment, too. In Pet Shop,

all fragments are contained in a page.



is retrieving their corresponding page” from the output
cache in case of cache hits, or from the back-end
application, otherwise. After the real content has arrived,
the page composition begins. The special tags in the
fetched container page are replaced with the content of its
subordinate fragments. The process will be recursively
performed if there are nested containments, until the page
is finally composed.

In summary, here are the steps that will occur at runtime:

1. client sends request to proxy,
2. proxy fetches container and fragments either from

the output cache (now hosted at proxy) or request
from backend, and

3. proxy assemble the page and returns to the client.

We should point out that this version of implementation is
for a quick evaluation of the Fproxy option and is much more
like a hack: There are no modifications to either proxy or
.NET framework anywhere, we simply replicate some of the
.NET functionality at the proxy side. A more solid and
application-independent implementation will be described
in Section 8.

6 EXPERIMENT SETUP

6.1 The Test Bed

There are a total of five machines in our experiment: two
servers and three clients (as shown in Fig. 8). Both servers
are powerful machines each with two Pentium 4 2.2GHz
CPUs, 2GB RAM, and two 73GB SCSI disks. The clients are
PCs with sufficient power so that they never become
bottlenecks in test runs. The three clients are connected to
the front-end server through a 100Mbps Ethernet switch. In
order to avoid contentions between front-end—client
communication and front-end—back-end communication,
two network adapters are installed on the front-end server.
The two portions of traffic will go through different
network adapters and switches.

In the test runs, F0 uses Fig. 8a, while the other three

configurations use Fig. 8b:

. For F0, the front-end server runs the original Pet
Shop application and the back-end server runs
database.

. For Fremoting, the presentation tier is hosted at the
front end and all the rest, including the business
logic tier and the database, are at the back end.

. For Fdb, the original Pet Shop runs at the front end
which accesses the database at the back end server.

. For Fproxy, the page assembly and fragment caching
tier runs at the front end and the modified Pet Shop
runs at the back end accessing a local database.

The software environment of our test bed is shown in

Table 2.
The Shunra\Cloud (version 3.1) [17] is used to emulate

network latency in our experiment. It is attached to a
network adapter and affects all the IP packets through it. In
Fig. 8a, Cloud resides in the front-end server to emulate
WAN conditions between clients and Web server. In Fig. 8b,
Cloud is associated with the back-end server to emulate
WAN conditions between proxies and content provider’s
servers. Cloud only imposes minor additional loads on the
server it attaches and its effect is negligible.

6.2 Client Emulation

We use Microsoft Application Center Test (ACT) to emulate
surges of clients. For each test, ACT distributes test load to
the client machines. Each client creates enough threads to
simulate a number of concurrent Web browsers visiting the
Web application under test. The actual behavior of the
threads is controlled by a test script. In each test, a thread
repeats the following steps until the test duration is over. It
first opens a persistent HTTP connection to the Web server.
Then, it chooses a request and sends it to the Web server.
After receiving the response, it waits for some thinking time
(50 milliseconds in our tests) and chooses the next request
and so forth. The selection of the request to send is
determined by a state transition diagram, which defines
the probability of going to the next request from the
previous one. If the thread chooses to exit, it stops sending
requests and closes the connection.
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TABLE 2
Software Configuration in the Experiment

1. In order to obtain reasonable performance, the application protection
mode is set to medium.
2. Come with .NET Framework V.1.0.3705.

TABLE 3
Distribution of the Test Workload



The workload generated by the test script roughly
follows the distribution shown in Table 3, which corre-
sponds to typical user browsing patterns for such Web site.

6.3 Tuning

Through our experiments, we found it is necessary to
finetune the configurations so as to eliminate as many side-
effects as possible. The major tunings are reported in this
section.

6.3.1 Queuing and Threading

ASP.NET assigns processing and I/O jobs (via .NET
Common Language Runtime (CLR)) to worker threads
and I/O threads in a thread pool with a specified maximum
size to process the requests from an incoming queue for the
application requested. For some configurations in our
experiment, satisfying a request at the front-end server
may require accessing external resources (i.e., object,
database, page fragment) from the back-end server with a
network delay of hundreds of milliseconds. The worker
thread has to be blocked and wait for I/O to complete.
Therefore, a high number of concurrent requests will lead to
many blocked threads in the pool as well as pending
requests in the queue. To minimize this kind of effect, we
make the following adjustments:

1. We set every application’s request queue long
enough to guarantee that requests be normally
served instead of being rejected with an HTTP
message indicating server error when server-side
congestion occurs. In reality, Web servers limit the
length of request queues (for dynamic page) to
prevent lengthy response time that is not acceptable
to users and, therefore, save resources for incoming
requests. In our experiment, we need to measure the
normal response time for each request, so we raise
the default queue length limit from 100 to 1,000.

2. Thread pool size affects performance significantly in
a subtle way. Too few threads can render the system
underutilized because there may be many blocked
threads. While increasing thread pool size might
accelerate processing and improve utilization, it will
cause more thread context switch overhead. In our
experiment, we tune the thread pool size at the front-
end server for each configuration under each test
condition (various network latencies and output
cache hit ratio) to produce the optimal result
(throughput and utilization). In general, a config-
uration with a longer processing time caused by
network latency needs a larger thread pool size. For
example, when the network latency is 200ms and the
output cache hit ratio is 71 percent, the optimal
thread pool size of F0, Fdb, Fremoting, and Fproxy is 25,
30, 30, and 50, respectively.

6.3.2 Connection Pooling

In the three configurations other than F0, the front-end
server needs to make heavy communications with the back-
end server via TCP. On a network with high latency, the
connection overhead becomes prominent due to TCP
handshake and slow start effect if no connection pooling

is used. In order to prevent this kind of performance

degradation, we set appropriate pooling parameters for

each configuration according to the connection mechanisms

used between the front end and the back end.
In Fdb configuration, each time the front end wants to

create a connection to the back-end database, the under-

lying data access component (ADO.NET) will pick a usable

matching connection from a pool of a certain size. If there is

no usable connection and the size limit is not reached, a

new connection will be created. Otherwise, the request is

queued before a timeout error occurs. When the network

latency is high and the work load is heavy, the number of

concurrent connections in use would constantly exceed the

limit, i.e., the connection pool becomes the bottleneck.

Therefore, we set the connection pool size large enough (300

rather than the default 100).
In Fremoting configuration, front-end objects invoke back-

end objects through .NET Remoting TcpChannels, which

will open as many as needed connections and cache them

for later use before closing them after 15-20 seconds of

inactivity. Since each test run has a warm-up period, there

is no negative impact on performance from this setting.
In Fproxy configuration, the front end needs to retrieve

Web objects from the back end. We set the maximum

number of persistent connections high enough (1,000) to

avoid congestions.

6.4 Measurement

Our experiment consists of two parts. The first part

measures the performance of the four configurations under

three fixed network latencies (50ms, 200ms, and 400ms).

The second part measures the performance under several

cache hit ratios.
For each test configuration, we vary the number of

concurrent connections and runACT to stress the application

andmeasure the throughput (in terms of requests per second

or RPS), response time (in terms of the time to the last byte of

a response), and utilization of the servers (front end and back

end). Each run starts with a warm-up period (3 minutes),

after which ACT begins to collect data about the system

status every one second by reading performance counters of

processors, memory, network interfaces, ASP.NET, .NET

CLR, and SQL Server. Data collection traffic only consumes a

slight portion of bandwidth compared to client requests and

server responses so it interferes little with the network

utilization of test load. The collection process will last for

3 minutes and then ACT stops running. Before each test run,

we reset theWeb server (to flush the cache) and the database

tables (to restore the data load) so that the results from

different runs are independent.

7 RESULTS AND EVALUATION

In this section, we offer detailed experiment results and

analysis. Due to the large number of configuration

combinations, we cannot present all the data. Thus, we

report response time and resource utilization with one

representative network latency in Section 7.1, and briefly go

over more advanced variations in Section 7.2.
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7.1 Basic Results

7.1.1 Response Time

We find Fproxy yields response time comparable to that of
Fremoting and Fdb, which is partly due to its efficiency of
communication between the front end and the back end. To
further clarify the result, we also show performance figures
for three kinds of requests that constitute the work load
below.

Fig. 9 shows the average response time versus con-
current connections number of the four configurations. The
cache hit ratio is 71 percent, and the network latency is
200ms. The loads on the front-end server in the three
offloading options are higher relative to that of F0, either
due to more processing or higher overhead. This is the
reason for the climbing of the latency curves corresponding
to the three optimizations. This is an artifact of our test bed
where there is only one proxy and is generally not a concern
because proxies are many in real deployment.

When there are less than 300 connections, Fdb, Fremoting,
and Fproxy offer a response time better than F0. The
reduction depends on the network delay. When the number
of connections is 15, the reduction is 76, 75, and 64 percent,
for Fdb, Fremoting, and Fproxy, respectively. In F0, every time a
request is issued from the client, it travels through the
delayed link and so does its response. Therefore, the
response time is always above the network roundtrip time
(400ms). In the other three configurations, many requests
can be satisfied at the front end right away. Fdb and Fremoting

achieve this by replicating the application logic fully or
partially from the back end. Fproxy caches dynamically
generated output such as pages and fragments and serves
subsequent matching requests from the cache directly or by
composing fragments in the cache, thus reducing the
frequency of accessing the back end significantly.

The response time of Fdb and Fremoting are very close
under small number of connections. This is because their
partition points afford them the same back-end access rate
and the traffic incurred by each access is enough to be
transferred within one roundtrip for both configurations.

Compared to Fproxy, Fdb and Fremoting do more than just
caching: They are capable of offloading some of logical
processing as well. For example, the responses of some

requests, such as GET CreateNewAccount.aspx and GET

SignIn.aspx, are not cacheable, so they will always go to
the back end in Fproxy. But, neither Fdb nor Fremoting requires
back end access for these requests.

The fact that the cacheable pages occupy a large portion
of the test loads is one reason that Fproxy does not lag too far
behind. However, there is one more subtle and interesting
case where Fproxy actually wins out.

Fproxy is optimized for retrieving Web pages and
fragments from the back end and performing page
assembly. When it encounters a request for a page contain-
ing fragments, all objects including the container page and
the fragments inside that are not cached will be fetched
from the back end asynchronously, allowing them to be
downloaded in parallel. After all objects arrive (in any
order), they are composed together and a complete page
will be returned. While in Fdb or Fremoting, due to the fact that
the partition points are inside the application logic, all
accesses to the back end such as database query and remote
object invocation are blocking. For example in Fremoting, if
completing a request needs to call the back end twice for
generating two fragments in the page, the two invocations
must be performed sequentially even though the two
fragments are independent of each other. The asynchronous
retrieving nature of Fproxy saves significant time for
processing such pages compared to Fdb and Fremoting. For
instance, the page Cart.aspx (uncacheable, used for
adding, updating, and removing items in a shopping cart)
contains one cacheable fragment and two uncacheable ones
which show a favorite list and a banner, respectively. The
favorite list and the banner need to query the back-end
database and the container page also needs to in case of
adding an item to the shopping cart. When the network
latency is 200ms and the work load is light it takes Fdb and
Fremoting 1,245ms and 1,285ms, respectively, (both over three
roundtrips), but takes Fproxy 784ms to generate the page.

Therefore, we can classify requests into three distinctive
classes (with their ratios):

. Class A (71 percent): cacheable response,

. Class B (14 percent): uncacheable response and may
need to access database, and

. Class C (15 percent): also uncacheable response but
there is no need to access database.

Fig. 10 compares the average response time of the
requests in each class for Fremoting, Fdb, and Fproxy. All of
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Fig. 9. Response time versus number of connections.

Fig. 10. Average response time of each class of pages.



them return responses for requests of class A in negligible

time. Fproxy wins in class B due to its asynchronous

optimization mentioned above. Fremoting responds slower

than Fdb because it introduces overhead when doing remote

object invocations. In class C, both Fdb and Fremoting can

return responses immediately, while Fproxy has to fetch

content from the back end with significant delay.

7.1.2 Scalability and Server Load Reduction

The other functionality of offloading and caching at proxies

is reducing server load so as to achieve better scalability.

Since our test bed consists of only one proxy and one

database server, we can only infer from the load distribu-

tion among resources. However, all offloading configura-

tions filter at least 70 percent of server requests through

proxy due to the output cache hits.
Fig. 11 plots the aggregated server loads for all four

configurations. These are loads that will still remain at the

server side regardless in real deployment. The curve of F0

adds up loads of both the front end (which runs the

application) and the back end (the database). Curves of all

three offload configurations are the loads on the back-end

server only and they are:

. Fdb: the database,

. Fremoting: the remaining of application logic and the
database, and

. Fproxy: modified Pet Shop application and the
database.

As we explained earlier, the front-end server in these

configurations all have higher loads than in F0, either

because of more processing or higher overhead. Conse-

quently, the three curves of the offload configurations do

not extend to as high throughput as in F0 because our front

end proxy becomes bottleneck.
As can be seen, in our test environment, the back-end

database is not the bottleneck. The largest load reduction is

achieved with Fdb where the functions of application server

are taken entirely by the proxies distributed near the client.

Because there is still some processing remaining at the back

end in Fremoting, it cannot achieve the same level of server

load reduction as Fdb. As expected, Fproxy is the third and

achieves reasonable load reduction comparing to F0.
In reality, a server complex is made up of a tier of

machines running application servers backed by the

database machines. The differences between the load curves

of F0, Fremoting, Fproxy, and Fdb are what will be run on the

machines hosting the application servers. It is evident that

to achieve identical throughput, Fdb will require the least

resources inside server complex, followed by Fremoting and

Fproxy.

7.2 Advanced Evaluation

7.2.1 Vary Network Latency

We repeat the experiment under two other network

latencies: 50ms and 400ms with light server load (15 con-

nections). The results are shown in Fig. 12.
There is no major surprise: The response time of F0 is

always over one roundtrip time. Both Fdb and Fremoting offer

comparable response time and Fproxy is slower but still

competitive. As expected, the benefit of offloading/caching

at proxy increases with network latency.

7.2.2 Vary Cache Hit Ratio

We repeat the experiment under two other output cache hit

ratios: 52 and 30 percent. The network latency is fixed at

200ms. The response time of the configurations under

different hit ratios is shown in Fig. 13.
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Fig. 11. CPU utilization in several of all configurations. Note: The three

curves of the offload configurations stop at throughput points

beyond which our front end proxy becomes saturated.

Fig. 12. Response time with different network latencies.

Fig. 13. Response time of different cache hit ratios.



This result is also straightforward: Increased cache hit
ratio benefits offloading/caching at proxy. We note again
that the caching is a more significant factor, though this is
specific to this application and the test scripts we used for
the experiments.

8 PROXY+: SIMPLE PROXY AUGMENTATION FOR

DYNAMIC CONTENT PROCESSING

As stated before, we used a rather ad hoc implementation of
Fproxy which is only intended to evaluate the performance
potential of this setting. Since the results show that it can
provide performance comparable to the other two options
while retaining low security requirements and engineering
cost, we believe a more general solution would be desirable.
Consequently, we propose Proxy+ architecture that offers
fragment caching and page composition ability. Our core
idea is to simply replicate the server-side caching function-
ality to the proxies, while carefully engineering the
protocols so that consistency enforcement takes a free ride
from what the programmers have already expressed when
enabling server-side dynamic content caching. Our archi-
tecture requires only minor modifications to existing
applications and is incrementally deployable.

We developed a prototype of Proxy+ on top of Microsoft
ISA Server [15]. The proxy is augmented with a Web Filter
that is able to do caching for ASP.NET applications which
have made use of ASP.NET built-in output caching facility
after minor modifications. In fact, these modifications will
be trivial if necessary supports are absorbed by ASP.NET.
Fig. 14 shows the architecture and workflow of Proxy+.

The ISA Web Filter is responsible for directing the
caching of multiple versions of pages and fragments as well
as composing pages. Cache is the storage of previously
requested pages and fragments. Both of them reside on the
ISA Server. ASP.NET Web Forms, which constitute the
presentation tier of the Web application running on the
server side, cooperate with the ISA Server to take advantage
of its enhanced caching ability. The system workflow is
described as follows:

1. An HTTP request arrives at the proxy.
2. The filter computes the cache keys of the page and

its fragments.
3. If all necessary items are valid in the cache, go to

step 5 and the result will be returned immediately.
Otherwise, it attaches a list of keys identifying
cached versions deemed relevant to the HTTP
request header and forwards it to the server.

4. The application generates a (partial) response con-
taining additional tags for delimiting cacheable
fragments or behaving as placeholders to be sub-
stituted with cached content. In addition, necessary
information, in the form of cache attributes tags,
which allows the proxy to compute the cache keys,
are sent over.

5. The filter parses the content (from the response or
the cache) and fills the placeholder tags in the text
with corresponding cached content, and installs any
cache attributes. This way, cache attributes are
incrementally pulled over on-demand.

6.

a. A complete response is sent back.
b. The fragments marked for caching are saved to

the cache.

On the server side, a Web application builds its UI by using
ASP.NET Web Forms classes. The content is generated by
handling appropriate events in the classes. For example,
“Load” is a typical event which is handled by many pages
and user controls to populate content to UI.

The modification to the application must satisfy two
requirements. It should be able to recognize the list of keys
sent from the proxy and avoid regeneration of correspond-
ing content. It also needs to insert additional tags to enable
the proxy to do fragment caching and page assembly.

We modify the application as follows: Some new
subclasses of Web Forms classes are added. All subclasses
of Web Forms classes in the application will inherit from
them instead. The new classes override the event dispatch-
ing and HTML outputting functions in their superclasses.

According to the key list attached in the request, they
will decide whether the specific event need to be dispatched
to the original handler or not (to avoid regeneration of
cached content) and what additional tags and cache
attributes are to be inserted into the HTML output.

The modification does not interfere with the original
workflow of the application at all, which would greatly ease
the reengineering effort. Readers are referred to [21] for
more details. Although our prototype is implemented
under Microsoft ASP.NET and ISA Server, we believe the
method is equally applicable to other platforms, e.g., JSP.

Fig. 15 compares the average response time of Proxy+
prototype and Fproxy. As can be seen, when client connec-
tions are few, Proxy+ yields performance comparable to
Fproxy, which conforms to the previous result. With more
connections, the response time of Proxy+ grows faster than
Fproxy because its feature of application independence incurs
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more overhead in some processing on the proxy, such as

parsing server responses and composing complete pages

from fragments. We believe that some of these problems

could be removed by a more optimized implementation.

9 SUMMARY AND CONCLUSION

We believe that Web page as a unit will disappear over time
and be replaced by dynamic content that is deeply
personalized. Utilizing the proxy servers located near the
client to distribute and offload the processing and caching
of dynamic content is entirely reasonable. This is all the
more so because these edge devices are already deployed
and at the same time underutilized as far as dynamic
content is concerned. However, such deployment requires
not only the reengineering of applications themselves, but
also the considerations of security issues and careful
evaluation of performance benefits.

In this paper, using a representative e-commerce bench-

mark, we have enumerated extensively many partitioning

strategies. Without going into specifics, the following

conclusions can be drawn:

1. Offloading and caching at edge proxy servers
achieves significant advantages without pulling
database out near the client. Our results show that,
under typical user-browsing patterns and network
conditions, two to three folds of latency reduction
can be achieved. Furthermore, more than 70 percent
of server requests are filtered at the proxies,
resulting in significant server load reduction.

2. This benefit can be largely achieved by simply
caching dynamic page fragments and composing
the page at the proxy. Advanced offloading options
can gain slightly more benefit, but are often more
complex and can be counterproductive if not done
carefully.

3. Many progresses in the most recent Web program-
ming platform play important roles for this to
happen. In the .NET framework, the output caching
capability, stored procedures and, to a less extent,
the Remoting mechanisms all made significant
contributions.

4. The three-tier Web architecture gives a general
guideline but is not as helpful when actual partition-
ing strategy is devised.

Specifically, we have evaluated the following three
partitioning strategies and our findings and recommenda-
tions are as follows:

1. Replicating all application components except data-
base to the edge provides the best average response
time and the highest reduction of back-end server
load. It is also the easiest to implement. However,
this would be otherwise impossible if not for a
highly efficient implementation of database interac-
tion. That is to say, this option will give only
disappointing offloading performance if not for the
fact that database stored procedure has encapsulated
multiple SQL queries within one request. The
restriction is that since the complete business logic
is pushed to the proxy, this option is suitable only
for intranet applications or other situations where
end-to-end security is already in place.

2. Partitioning the application components and moving
some of them on the edge offer similar response time
as well as server load reduction. The prerequisites are
that the application is carefully partitioned and
appropriate RPC mechanism is used. However, it
would require considerable engineering cost for a
complexWeb application that was not designed to be
run in a distributed fashion to begin with. Further-
more, if it is impossible to determine the sensitivity of
the processing offloaded to the proxy, then this
option will require end-to-end security as well.

3. We find that simply augmenting the capability of
proxy today to cache dynamic fragment and
compose the complete page is also very effective in
terms of latency and server load reduction. The
security requirement is minimal because what get
cached at proxy are contents, not logics. This option
requires change to the original application, but the
process can be reasonably automated or comes for
free if standard guidelines such as ESI are followed.

Our investigation thus essentially boils down to one
simple recommendation: If end-to-end security is in place
for a particular application, then offload all the way up to
the database; otherwise, augment the proxy with page
fragment caching and page composition.

Although our experiment was carried out within the
.NET framework, the conclusion should be general enough
to be valid on other platforms, especially for e-commerce
type of applications. Many of the .NET framework and
ASP.NET features are shared by other competing platforms.
Furthermore, we found that network latencies dominate the
performance anyway, and the .NET framework itself
contributes negligible overhead in comparison.

The TTL-bound consistency enforcement as is used in
this benchmark prevails in today’s Web deployment,
largely due to its simplicity. If more advanced, server-
driven consistency maintenances [20] are to be taken in the
future, we still believe our observation to hold true in
general because the cache hit ratio will remain the same for
all these options. What makes the difference is mainly the
amount of processing being offloaded, which is orthogonal
to consistency mechanism.
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Based on these conclusions, we built a more robust,
application-independent implementation of caching frag-
ments and page assembly on top of the proxy architecture.
It requires only simple proxy augmentation and minor
changes to server-side applications to enable dynamic
content caching at the edge.

Our future work includes a number of directions. We
believe while e-commerce application is interesting, they
will represent only a small portion in the future given that
Web services will grow to cover more Web usage scenarios.
Thus, we are actively seeking new applications and repeat
our investigations. In addition, we believe it is important to
extend this work to include underprivileged users with
slow and narrow connections to the proxies. In such cases,
caching at proxy is no longer sufficient: We need such
functionality to move to the client side. Our preliminary
experiments have indicated that this can bring about
significant benefits, even though one no longer enjoys the
high caching hit ratio at proxies because of sharing among
different users.
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