
 

  

Proxy+: Simple Proxy Augmentation for Dynamic Content 
Processing 

Chun Yuan1  

t-cyuan@microsoft.com 
Zhigang Hua2 

zghua@mails.gscas.ac.cn 
Zheng Zhang1 

zzhang@microsoft.com 
1
Microsoft Research Asia 

2
Institute of Automation, Chinese Academy of Sciences 

Abstract 

Caching dynamic content can bring many benefits 
to the performance and scalability of Web 
application servers. However, such mechanisms are 
usually tightly coupled to individual application 
servers (or even applications) that prevent caching at 
more advantageous points. In this paper we propose 
an approach to enable dynamic content caching at 
enhanced Web proxies which requires only simple 
modifications to existing applications. 

1 Introduction 

Dynamic content will dominate the Web in the 
future. This necessitates architectural change in 
tandem. In particular, resources that are already 
deployed near the client such as the proxies that are 
otherwise underutilized for such content should be 
employed. 

Legitimate strategies include offloading some of the 
processing to the proxy, or simply enhancing its 
cache abilities to cache fragments of the dynamic 
pages and perform page composition. While 
performance benefits including latency and server 
load reduction are important factors to consider, 
issues such as engineering complexity as well as 
security implication are of even higher priority. Our 
previous work  [20] investigates what will be the 
best offloading and caching strategies and their 
design/deployment tradeoffs given the proxy 
resources at the edge of the network. We have 
shown that simply caching dynamic page fragments 
and composing the page at the proxy achieve close 
performance to other strategies. In fact, advanced 
offloading strategies can be overly complex and 
even counter-productive performance-wise if not 
done carefully. 

This work continues the previous work to 
demonstrate the advantage and feasibility of proxy 
caching for dynamic content. We propose Proxy+ by 
adding a caching filter at Microsoft ISA proxy 
server  [14] and offers fragment caching and page 
composition ability. Our core idea is to simply 

replicate the server-side caching functionality to the 
proxies, while carefully engineering the protocols so 
that consistency enforcement takes a free-ride from 
what the programmers have already expressed when 
enabling server-side dynamic content caching. Our 
architecture requires only minor modifications to 
existing applications and is incrementally 
deployable. Finally, although our prototype is 
implemented under Microsoft ASP.NET  [13] and 
ISA Server, we believe the method is equally 
applicable to other platforms. 

The rest of the paper is organized as follows. 
Section  2 covers related work. Section  3 summarize 
our previous results which motivates this work. 
Section  4 describes the architecture, components 
and protocol of Proxy+. Section  5 illustrates how 
existing ASP.NET applications can be modified to 
work with Proxy+. Section  6 reports our 
experimental results. Section  7 discusses some 
security issues. Finally we conclude in section  8. 

2 Related Work 
Optimizing dynamic content processing has been 
widely studied. Most work focused on supporting 
dynamic content caching on server side  [9] [10] [19]. 
Currently there are already mature application 
server products offering this feature, e.g. Microsoft 
ASP.NET, BEA WebLogic  [1], IBM WebSphere  [7], 
Oracle9iAS  [16]. Server-side caching can reduce 
server load and therefore improve response time 
when client stress is high. Moving the caching tier 
to proxies at the network edge that is closer to 
clients would bring more benefits as reported in 
 [11] [20]. 

Fragments caching is key to dynamic content 
caching, since it can improves page cacheability and 
cache efficiency. Many Java application servers 
allow programmers to mark a part of a page as 
cacheable using JSP tags. In ASP.NET such 
fragment can be explicitly put into a user control 
which has its own cache parameters and can be 
included by pages or other user controls. The cache 



 

  

is usually associated with the application server, 
thus preventing caching at more advantageous 
points.  [5] also uses tags to support fragment 
caching on a reverse proxy which is assumed to be 
near the server, but it does not consider caching on 
remote proxies. Active Cache  [3] is a rather general 
scheme to push server-side processing to proxies but 
it does not address specific issues with fragment 
caching. IBM WebSphere’s Trigger Monitor  [8] also 
support fragment caching, but on predetermined 
edge servers only. 

ESI  [4] proposes to cache fragments at the CDN 
stations to reduce network traffic and response time. 
ESI introduces some directives for programmers to 
author cacheable Web pages which will be 
interpreted by ESI engine on edge servers. A page 
may include fragments which will be retrieved 
separately from the server (when cache miss). 
Therefore for existing applications to employ ESI, 
original single output of a page has to be divided 
into parts which can be separately generated and 
retrieved. The top-level page output also need to 
contain ESI include directive for edge servers to get 
inner fragments. However this could violate original 
request processing workflow and semantics, because 
during original page generation the top-level page 
and the fragments are in the same request context 
while after factoring they are independently 
requested. Hence turning a fragment into a page 
would require understanding of the original page 
semantics and may require considerable 
reengineering effort. 

Proxy+ relies on output tagging to distinguish 
fragments so that they can be independently cached. 
It requires only trivial extension to existing 
applications, provided that they have already made 
use of fragment caching on server side. Furthermore 
it does not interfere with the application’s original 
workflow and need not to understand the details of 
the application. We let proxies notify a list of cache 
keys that are deemed relevant to the request so that 
network traffic and server load can be saved as 
much as possible. 

3 Summary of Previous Result 

In our previous work  [20] we studied the 
performance of four Web application configurations, 
with three of them taking advantage of edge proxy 
to offload server processing. 

 F0: the default setting, with all processing 
happening on the server 

 Fremoting: push part of application logic (e.g. 
presentation tier) to the proxy 

 Fdb: push everything except database to the 
proxy 

 Fproxy: push fragment caching and page 
composition functionality to the proxy 

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300

Connections

R
es

po
ns

e 
T

im
e 

(m
s)

F0
Fremoting
Fdb
Fproxy

 

Figure 1. Response time versus number of 
connections. The roundtrip time is 400ms. 

Our results (Figure 1) show that under typical user 
browsing patterns and network conditions, 2~3 folds 
of latency reduction can be achieved. Furthermore, 
over 70% server requests are filtered at the proxies, 
resulting significant server load reduction. 
Interestingly, this benefit can be achieved largely by 
Fproxy – simply caching dynamic page fragments and 
composing the page at the proxy. Taking 
implementation cost and security into account, our 
result can be summarized in Table 1. 

In other words, augmenting today’s proxy caching 
capability has the best tradeoff. The Fproxy 
implementation in that paper took an ESI-like 
approach and was application-dependent, which 

 Performance Security req. Complexity 

Fdb Best High Low 

Fremoting Second Unsure  High High 

Fproxy A close 3rd Low Lowest 

Table 1. Comparison of different configurations 



 

  

motivates the work of this paper. 

4 Proxy+ Architecture 
Given that proxy augmentation offers the best 
tradeoff, we developed the prototype of Proxy+ on 
top of Microsoft ISA Server. The augmented proxy 
is able to do caching for ASP.NET applications 
which have made use of ASP.NET built-in output 
caching facility after minor modifications. In fact, 
these modifications will be trivial if necessary 
supports are absorbed by ASP.NET.  

The core idea is straightforward: replicate the output 
cache functionality at the proxy with an ISA Web 
filter. Therefore, the engineering focus is on how to 
get a “free ride” by mirroring caching semantics and 
its enforcement from server side’s output cache. 
Figure 2 shows the architecture and workflow of 
Proxy+. 

The ISA Web Filter is responsible for directing the 
caching of multiple versions of pages and fragments 
as well as composing pages. Cache is the storage of 
previously requested pages and fragments. Both of 
them reside on the ISA Server. With ASP.NET, Web 
Forms constitute the presentation tier of the Web 
application running on the server side. In our 
framework, applications can cooperate with the ISA 
Server to take advantage of its enhanced caching 
ability after minor extensions to the classes that the 
Web Forms inherit from. 

The system workflow is described as follows. 

1) An HTTP request arrives at the proxy. 
2) The filter computes the cache keys of the page 

and its fragments. 
3) If all necessary items are valid in the cache, go 

to  5) and the result will be returned immediately. 
Otherwise, it attaches a list of keys identifying 
cached versions deemed relevant to the HTTP 
request header and forwards it to the server.   

4) The application generates a (partial) response 
containing additional tags for delimiting 
cacheable fragments or behaving as 
placeholders to be substituted with cached 
content. In addition, necessary information, in 
the form of Cache Variation Logic (CVL) tags, 
which allows the proxy to compute the cache 
keys are sent over.  

5) The filter parses the content (from the response 
or the cache) and fills the placeholder tags in the 
text with corresponding cached content, and 
installs any CVL tags. This way, CVLs are 
incrementally pulled over on-demand. 

6a) A complete response is sent back. 
6b) The fragments marked for caching are saved to 
the cache. 

In the following text, we are going to illustrate the 
essential components in turn: 

 We will start by reviewing ASP.NET’s output 
cache and in particular its semantics of caching 
multiple versions. 

 We will then present how cache keys are 
computed with the help from the application 
side. This entails two steps: modification at 
application to generate CVL tags, and 
proxy-side’s use of such tags to produce cache 
keys. 

 Next, we describe how the proxy assembles a 
page out of content in its cache and, if necessary, 
notify the server/application what are already 
available in its cache to avoid redundant 
transfer. 

4.1 ASP.NET output caching 

The presentation tier of an ASP.NET Web site 
consists of a set of Web Form pages (with .aspx 
extension) and user controls (with .ascx extension). 
They are responsible for generating Web pages 
(usually in HTML) to satisfy client requests. A user 

ISA Web 
Filter 

ASP.NET 
Web Forms 

1) 

4) 

3) 

6a) 

6b) 2) 

Cache 

WAN 

5) 

Figure 2. Architecture and workflow of Proxy+ 



 

  

control represents a fragment of a page and can be 
included by many pages or other user controls. 

ASP.NET allows many versions outputted by a page 
to be cached (at the server side). Programmers can 
use a high-level, declarative API or a low-level, 
programmatic API when manipulating the output 
cache. For example, the following @OutputCache 
directive (included in an .aspx or .ascx file) sets an 
expiration of 60 seconds for the cached output of the 
page or user control. 

<%@ OutputCache Duration=”60” 
VaryByParam=”none” %> 

Upon arrival of subsequent requests, the output 
cache will send the proper cached version as 
response directly. While this is the basic version, 
advanced features require programmers to specify 
how the output cache is varied by. @OutpputCache 
directive includes the following attributes referred to 
as Cache Variation Logic (CVL) that can be used to 
cache multiple versions of page output. 

 VaryByParam: vary the cached output 
depending on GET query string or form POST 
parameters. Including the following example at 
the top of an .aspx file will cause different 
versions of output to be cached for each request 
that arrives with a different “city” parameter 
value. 

<%@ OutputCache Duration="60" 
VaryByParam="city" %> 

 VaryByHeader: vary the cached output 
depending on the HTTP header associated with 
the request. The following example sets 
versions of a page to be cached, based on the 
value passed with the “Accept-Language” 
HTTP header. 

<%@ OutputCache Duration="60" 
VaryByParam="none" 
VaryByHeader="Accept-Language" %> 

 VaryByCustom: vary the cached output by a 
custom string. This is the most advanced and 
powerful option. A special method called 
HttpApplication.GetVaryByCustomString() 
must be overridden which is used to map a 
string name to a value under some context. The 
following directive will cause the output to be 
cached for each request with a different value 
corresponding to “userstatus”, which may be, 
for example, “login” or “logout”. 

<%@ OutputCache Duration="60" 
VaryByParam="None" 
VaryByCustom="userstatus" %> 

ASP.NET output cache computes a key based on 
CVL, and searches for the associated content in the 
cache. The key calculation is internal to the output 
cache. Consequently, proxy-side cache must be 
keyed with its own algorithm. 

4.2 Cache key generation 

In order to enable proxy-side output caching, the 
proxy must uses its own key generation algorithm.  
Our current implementation simply concatenates 
with semicolons the path name of the page (or user 
control) and the values that the output depends on in 
order to produce the cache key. For example 
suppose the page 
http://www.petshop.net/Category.aspx has the 
following CVL. 

<%@ OutputCache Duration="60" 
VaryByParam="category_id" 
VaryByHeader=”Accept-Language” %> 

If it receives a request 
http://www.petshop.net/Category.aspx?category_id=
cats, and the header field “Accept-Language” is 
“zh-cn”, then the cache key is 
“/Category.aspx;cats;zh-cn”. 

And suppose the CVL of the user control named 
“header” at http://www.petshop.net is as follows. 

<%@ OutputCache Duration="60" 
VaryByCustom=”userstatus” %> 

It is included by “/Category.aspx” and is intended to 
show different interface for anonymous users and 
authenticated users. When requested, the 
programmer-defined method 
GetVaryByCustomString() will analyze the cookie 
and decide the user status. If the user has signed in, 
it will map “userstatus” to, for example, “login”. 
Therefore, the final cache key of header’s output 
would be “header;login”. The way for the proxy to 
get the method is described in the next section. 

In Proxy+, to avoid redundant computation and 
transfer, whatever contents available at proxy will 
be notified to the server, using the cache keys. 
Server runs the same key generation algorithm to 
generate the cache keys again so as to skip the 
redundant content generation. This will be described 
in more detail in section  5. 



 

  
                                         

<html> 
<head>…</head> 
<body><table><tr>…</tr> 
<tr>…</tr></table></body> 
</html> 

</cache> 

<cache name="/Category.aspx" 
key="/Category.aspx;cats;zh-cn" 
ttl="60" varybyparam="category_id" 
varybyheader="Accept-Language" 
masterttl="43200"> 

<html> 
<head>…</head> 
<body><table><tr>…</tr> 
<tr>…</tr></table></body> 
</html> 

The beginning tag contains the 
name of the page, cache key, 
TTL and CVL attributes. 

Normal Output Tagged Output 

GET http://www.petshop.net/Category.aspx?category_id=cats 
Accept-Language: zh-cn 
Cookie: PetShopAuth=4CDC35C40AD43BDE 

Request: 

The end tag. 

Figure 3. Tagging the output of a page 

<html> 
<head>…</head> 
<body> 
 
 
 
 
<p>…</p> 
</body> 
</html> 

<table><tr>…</tr> 
<tr>…</tr></table> 

<html> 
<head>…</head> 
<body> 
 
 
 
 
 
 
 
 
 
 
<p>…</p> 
</body> 
</html> 

<table><tr>…</tr> 
<tr>…</tr></table> 

</cache> 

<cache name="/Category.aspx" 
key="/Category.aspx;cats;zh-cn" 
ttl="60" varybyparam="category_id" 
varybyheader="Accept-Language" 
masterttl="43200"> 

</cache> 

<cache name="header" 
key="header;login" ttl="600" 
varybycustom="userstatus" 
masterttl="43200"> 

Normal Output Tagged Output 

GET http://www.petshop.net/Category.aspx?category_id=cats 
Accept-Language: zh-cn 
Cookie: PetShopAuth=4CDC35C40AD43BDE 

Request: 

Figure 4. Tagging the output of a page as well as its inner fragment 



 

  

Of course, in practice a proxy may interact with 
many servers, so the scope of a cache key is limited 
to the server which defines the CVL. In the above 
case, the cache key “/Category.aspx;cats;zh-cn” and 
“header;login” are only applicable to requests sent 
to the server www.petshop.net. 

4.3 Tag generation and fragment 
caching 

The CVL and TTL (time to live, i.e., Duration 
attribute in @OutputCache directives) of a page is 
communicated to the proxy through additional 
<cache> tags in the output. Figure 3 illustrates 
how such tags are added to the normal output. 

When receiving a tagged response, the proxy will 
cache the actual content with the key. It also 
recognizes the CVL attributes according to which 
cache keys for subsequent requests will be 
calculated. The CVL is installed if it sees it the first 
time, or updated if necessary. This way, CVL tags 
are pushed to proxy incrementally in an on-demand 
fashion. The “masterttl” attribute declares the 
lifetime of the master program that produces the 
output, while “ttl” defines the lifetime of the 
specific version of output only. Therefore in the 
above example, the CVL of the page named 
“/Category.aspx” is valid for 12 hours. 

Fragments are treated in the same way, though a 
tagged fragment might be contained in another 
tagged page or fragment. In this case, the outer page 
needs to cache the content at its level and the 
positions and names of the inner fragments. That is, 
the cached page output doesn’t include the content 
of the fragments inside but their places and names 
instead, which are used to insert new versions of the 
fragments. Figure 4 shows how a page output 
containing a fragment is tagged (assume now 

“/Category.aspx” contains a fragment called 
“header” inside). Note that the inclusion relationship 
is also valid for 12 hours as limited by the 
“masterttl” attribute. 

The page and the fragment will be cached as shown 
in Figure 5. The <include> tag represents a 
placeholder that is to be replaced with the content of 
a fragment with the specified name. All <cache> 
tags will be removed from the output and the client 
will receive a response just like the normal output. 

As for the fragment “header” whose CVL 
containing VaryByCustom, it is not enough to 
notify the attribute values to the proxy because it 
depends on the function GetVaryByCustomString() 
to generate their cache keys. In Proxy+, the Web 
application specifies the location of the dynamic 
linking library by sending a new HTTP header, 
“X-GetVaryByCustom”, with the response: 

X-GetVaryByCustom: library-url 

which must export the function: 

string 
GetVaryByCustomString(HttpRequest 
req, string varyby); 

Proxy is responsible for passing the complete 
request (the argument “req”, including various 
header fields, cookies and body) and the value of 
VaryByCustom attribute associated with a fragment 
(the argument “varyby”) to the function, which will 
return a unique string for identifying the version of 
the fragment. For example, besides generating the 
tagged output, the application would also add the 
following header to the response: 

X-GetVaryByCustom: 
http://www.petshop.net/varybycustom

<html> 
<head>…</head> 
<body> 
 
 
 
<p>…</p> 
</body> 
</html> 

<include name="header" /> 
 

key: /Category.aspx;cats;zh-cn 
expire: 12 March 2003 12:20:40 

<table><tr>…</tr> 
<tr>…</tr></table> 

key: header;login 
expire: 12 March 2003 12:29:40 

Figure 5. Cached output 



 

  

.dll 

The proxy can download the DLL and import the 
function. Requesting pages/fragments with 
VaryByCustom attributes will cause cache miss 
when the DLL is not available (not downloaded or 
become obsolete). 

When receiving a subsequent request, if any of the 
necessary keys is not found in the cache (i.e., cache 
miss), the proxy will forward the request to the 
server. Otherwise it will compose the items 
corresponding to the keys together and return a 
complete response. Continuing the example, when 
receiving the request 
http://www.petshop.net/Category.aspx?category_id=
cats again (with “Accept-Language” header being 
“zh-cn”) the proxy computes a key 
“/Category.aspx;cats;zh-cn” that would be found in 
the cache. Then it computes another key for the 
fragment the page needs to include. If the user 
hasn’t signed out, GetVaryByCustomString(Request, 
“userstatus”) will return a string “login” according 
to the authentication cookie in the request and thus 
the key would be “header;login”, which means both 
items hit the cache. The proxy will insert the content 
of “header” into that of “/Category.aspx” and the 
full output is returned. If the user has signed out and 
the cache doesn’t contain the key “header;logout”, 
the request will be forwarded to the server. 

GetVaryByCustomString() may not be able to 

accomplish the same function on the proxy as its 
counterpart on the server when it requires 
server-specific resources like database. For example 
on a personalized portal site, the method may read 
user settings and produce a news type id (such as 
“science”) that the user is interested in for a news 
fragment, while user settings are not accessible from 
proxies. Therefore not all kinds of pages and user 
controls with VaryByCustom attributes on the 
server are equally cacheable on the proxy. 

4.4 Cache keys notification and page 
composition 

Unlike traditional HTTP caching proxies, proxy+ 
can cache some parts of the response even when the 
others miss. If the application could know what 
parts have been cached on the proxy and output only 
those that are missing, server resources would be 
saved. Therefore, in our architecture a proxy is 
allowed to notify the server a list of keys along with 
the request to indicate that the page/fragments with 
these keys have been cached so that the server 
doesn’t need to generate the content again. The 
notification is done by appending a new HTTP 
header field, “X-CachedKeys”, to the incoming 
request: 

X-CachedKeys: cache-key1, 
cache-key2, ... 

If the server-side application finds that the cache 

<html> 
<head>…</head> 
<body> 
 
 
 
 
<p>…</p> 
</body> 
</html> 

<table><tr>…</tr> 
<tr>…</tr></table> 

<html> 
<head>…</head> 
<body> 
 
 
 
 
 
<p>…</p> 
</body> 
</html> 

<subst name="header" 
key="header;login"> 

</subst> 

Normal Output Tagged Output 

</cache> 

<cache name="/Category.aspx" 
key="/Category.aspx;cats;zh-cn" 
ttl="60" varybyparam="category_id" 
varybyheader="Accept-Language" 
masterttl="43200"> 

Figure 6. Using <subst> tag in place of cached inner fragment 



 

  

key of the page or fragment is listed in the header, it 
can skip the content generation process and instead 
put a placeholder tag (<subst>) along with the 
name and the cache key. The verification is 
processed by running exactly the same key 
generation algorithm as in proxy. Placeholder tags 
are intended to be substituted with the 
corresponding content from the proxy cache. For 
example, assume the proxy forwards the request 
http://www.petshop.net/Category.aspx?category_id=
cats (with “Accept-Language” header equaling 
“zh-cn”) with such a header added, 

X-CachedKeys: header;login 

If the user has signed in, the application will verify 
that the cache key of the inner fragment “header” is 
in the request header and can mark the output as in 
Figure 6. The pair of <subst> tag is to be replaced 
with the cached fragment having the key 
“header;login” on the proxy. 

On the other hand, if the request has this header, 

X-CachedKeys: 
/Category.aspx;cats;zh-cn 

the output can be like Figure 7. 

On the proxy the fragment “header” will be inserted 
into the cached output with key 
“/Category.aspx;cats;zh-cn” in the position of the 
placeholder and a complete page returned. 

Note that the server is not required to skip the 
generation of the page or fragment even though its 
cache key is in the key list: it can optionally choose 
to include the actual output (with the <cache> 
tags). This flexibility allows a server to effectively 

remove the caching capability of an untrusted proxy, 
and to proactively update both the content and CVL 
when server deems necessary. 

4.5 Summary of the protocol 

The protocol can be summarized as follows: 

 From server to proxy: uses <cache> tags to 
inform Proxy+ both the contents to be cached 
and the associated CVL tags. This allows 
on-demand and incremental installation of the 
CVL, and also affords server the opportunity to 
control the Proxy+ caching capability if 
necessary. 

 From proxy to server: uses <X-CachedKeys> 
to inform already cached contents so that 
redundant computation and transfer maybe 
avoided.   

 The advanced output cache feature 
VaryByCustom requires the server to specify an 
URL of a DLL that exports the function 
GetByCustomString which the proxy 
subsequently downloaded. This feature may not 
be possible if such function needs to access 
resources known only at the server side. 

 Proxy+ is incrementally deployable: it behaves 
as any normal proxy with non-proxy+ aware 
applications (servers). The reverse is also true: 
no ill side-effect is caused when a proxy+ aware 
application interacts with a normal proxy. 

The consistency control of Proxy+ cache is enforced 
exactly the same as the output cache on the server. 
Thus, our protocol accomplishes the goal of 

<html> 
<head>…</head> 
<body> 
 
 
 
 
<p>…</p> 
</body> 
</html> 

<table><tr>…</tr> 
<tr>…</tr></table> 

 

Normal Output Tagged Output 

</subst> 

<subst name="/Category.aspx" 
key="/Category.aspx;cats;zh-cn"> 

<table><tr>…</tr> 
<tr>…</tr></table> 

</cache> 

<cache name="header" 
key="header;login" ttl="600" 
varybycustom="userstatus" 
masterttl="43200"> 

Figure 7. Using <subst> tag in place of cached outer page (fragment) 



 

  

replicating output cache functionality on the proxy. 
It should be noted that using DLL to package 
custom cache key generation function is only for our 
convenience of implementation on Windows 
platform. A complete implementation may provide 
equal support for other platforms by, e.g., using a 
cross-platform language like Java or script language. 

5 Application Modifications 
We now turn our attention to the necessary 
modifications to applications. As it turns out, the 
changes are very minor, and even trivial if supports 
are built into ASP.NET. 

Proxy+ architecture currently targets ASP.NET 
applications and assumes programmers have used 

Page UserControl 

Category 

Product 

… 

header 

menu 

… 

TaggedPage TaggedUserControl 

Category 

Product 

… 

header 

menu 

… 

Page UserControl 

a) class hierarchy before modification b) class hierarchy after modification 

Figure 8. Web application presentation tier class hierarchy 

Figure 9. Pseudo code of the TaggedPage class 

bool cached; 

override OnInit(e) { 
    cached = (my cache key) ∈ (the key list received with the request); 
           // my cache key computed in the same way as on proxy 
    base.OnInit(e); 
} 

override OnLoad(e) { 
    if not cached 
        base.OnLoad(e); 
} 

override Render(output) { 
    if cached {  // make a placeholder for proxy to insert content at; 
               // still need the inner fragments to output their content 
        output.Write (beginning of subst tag); 
        foreach ctrl in this.Controls 
            if ctrl is TaggedUserControl 
                ctrl.RenderControl(output); 
        output.Write (end of subst tag); 
    } else { 
        output.Write (beginnng of cache tag); 
        base.Render(output); 
        output.Write (end of cache tag); 
    } 
} 



 

  

ASP.NET Web Forms Page and UserControl class to 
implement dynamic content caching on server side. 
To enable output tagging for such applications, it is 
sufficient to simply extend Page and UserControl 
class to generate tags and avoid regeneration of 
cached content. The process doesn’t interfere with 
the original workflow of the application at all. 

In general a Web application builds its UI by using 
ASP.NET Web Forms. The components at the 
presentation tier are subclasses of the class 
System.Web.UI.Page and 
System.Web.UI.UserControl as illustrated in Figure 
8a). The content is generated by handling 
appropriate events in the class. For example, “Load” 
is a typical event which is handled by many pages 
and user controls to populate content to UI. 

The modification to the application must satisfy two 
requirements. The new application should be able to 
recognize the list of keys sent from the proxy and 
avoid regeneration of corresponding content. It also 
needs to insert additional tags as described to enable 
the proxy to do fragment caching and page 
assembly. 

We modify an application as follows. Two new 
classes TaggedPage and TaggedUserControl are 
added; they are subclass of Page and UserControl 
respectively. All subclasses of Page and UserControl 
will inherit from them instead, as shown in Figure 
8b). These two classes override the event 
dispatching and HTML outputting functions in their 
superclasses. According to the key list attached in 
the request, they will decide whether the specific 
event need to be dispatched to the original handler 
or not (to avoid regeneration of cached content) and 
what additional tags (<cache> or <subst>) and 
CVLs are to be inserted into the HTML output. 

The pseudo-code of TaggedPage is listed in Figure 9. 
TaggedUserControl’s code is essentially the same 
with minor differences. For applications built with 
other Web programming platforms (e.g. JSP), we 
believe the modifications would also be similar. 

6 Experimental Results 
We measure the performance of our Proxy+ 
prototype with a representative e-commerce 
benchmark called .NET Pet Shop  [12]. The 
availability of the source code allows us to 
experiment Proxy+ without hack into ASP.NET 
itself. The experiment configuration is depicted in 
Figure 10. 

The clients run Microsoft Application Center Test 
(ACT) to simulate a number of concurrent Web 
browsers. ACT creates enough threads (specified by 
a connection number) to issue requests according to 
a test script that defines the test workload. The 
request distribution of the workload is shown in 
Table 2. The requests are sent to the proxy running 
Microsoft ISA Server with the output cache-enabled 
filter installed, and then forwarded to the backend 
Web server running Microsoft IIS, ASP.NET and 
SQL Server. The hardware settings of the proxy and 
the server are dual 1.7G Pentium 4 Xeon with 2GB 
RAM and dual 2.4G Pentium 4 Xeon with 1GB 
RAM respectively. The clients are also powerful 
enough not to become bottlenecks in our tests. All 
machines are connected in a switched 100Mbps 
Ethernet. A WAN emulator (Shunra\Cloud  [18]) 
running on the backend server is used to set a 
constant latency between it and the proxy, while the 
client accesses the proxy over the LAN directly.  

Activity Percentage 

Category Browsing 18% 

Product Detail 16% 

Search 18% 

Home Page 18% 

Shopping Cart 7% 

Order 1% 

Account/Authentication 22% 

Table 2. Distribution of the test workload 

ACT 
ISA Server 

IIS + ASP.NET 

SQL Server 

Clients Proxy Server 

C
loud 

ACT 
ACT 

Figure 10. Experiment configuration 



 

  

We compare the response time of the Web site 
accessed via the proxy with and without the filter 
enabled (Proxy+ and common proxy). Figure 11 
shows the average response time versus number of 
concurrent connections when the roundtrip network 
latency between the proxy and the server is set to 
400ms. 

0

100

200

300

400

500

600

0 20 40 60 80 100

Connections

R
es

po
ns

e 
T

im
e 

(m
s)

Filter

No Filter

 

Figure 11. Response time with 400ms roundtrip 
latency 

As can be seen, the response time of common proxy 
is always above the roundtrip latency because every 
request has to travel through the delayed link and so 
does its response. With Proxy+, about 60% of the 
response time can be saved, where the full page hit 
ratio (a page and all of its inner fragments hit the 
cache, thus avoiding server access) is about 70%. 

Network traffic saving is another benefit besides 
response time improvement. In the above test, 87% 
of the traffic between the proxy and the server is 
reduced on average. 

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Connections

R
es

po
ns

e 
T

im
e 

(m
s)

Filter

No Filter

No Proxy

 

Figure 12. Response time without setting latency 

To measure the overhead of the filter, we repeat the 
test without setting any network latency and also 
compare them with the response time of accessing 
the Web site directly. The results are shown in 
Figure 12, where “No Proxy” means requests are 
issued directly to the Web server. Due to ISA 

Server’s overhead, the response time of “No Filter” 
option is slightly more than that of “No Proxy”. And 
because the filter’s overhead happens to counteract 
the saved server side response time, “Filter” option 
has about the same response time as “No Filter”. 
Therefore, the overhead can be roughly estimated as 
the server side response time (about 10ms as shown 
by “No Proxy” data since network delay is 
negligible) timing the hit ratio, that is, about 7ms, 
which is acceptable when network latency between 
proxy and server is considerable, for example, 
hundreds of milliseconds. 

7 Security aspect 
Besides the security limitations that common HTTP 
caching proxies have, Proxy+ raises some different 
issues as well as interesting possibilities. Caching 
can be thought as filtering, consequently there is 
always a possibility of substituting contents. Proxy+ 
makes it possible for such actions – intentionally or 
otherwise, to be performed on a much finer 
granularity. We note that Proxy+ leaves the power 
and flexibility of control on the server. For a more 
systematic way to guard against proxy abuse we 
refer readers to approaches such as Gemini  [15]. 

It poses a problem to proxies that they need to 
import DLLs provided by servers in order to cache 
pages/fragments with VaryByCustom attributes. 
Such DLLs must be signed by the server. If a proxy 
is unsure, it should run such DLL in a sandbox and 
deny its access to resources such as network and 
storage IO. 

8 Conclusions 
After establishing the argument that simple proxy 
extension will work just as well for dynamic content, 
we proposed Proxy+ architecture for dynamic 
content caching on augmented proxies near clients. 
The protocol uses simple extension to HTTP and 
can work coherently with common Web applications 
and proxies. Only minor modifications to existing 
applications are necessary to cooperate with Proxy+. 
Our experiment shows that a significant amount of 
response time and network traffic can be saved with 
Proxy+. Due to its low implementation cost and 
incremental deployability, we believe it is a 
competitive solution. We are currently extending 
Proxy+ fragment caching and page composition 
components from proxy servers to Web browsers so 
that clients with last-mile bottleneck can benefit 
from the bandwidth saving by this scheme 
 [2] [6] [17]. 



 

  

Acknowledgements 
We are very grateful to the anonymous reviewers for 
their helpful comments. 

References 
[1] BEA WebLogic Server. 

http://www.bea.com/products/weblogic/server/ 

[2] Brabrand, C., Møller, A., Olesen, S. and 
Schwartzbach, M.I. Language-Based Caching of 
Dynamically Generated HTML. World Wide 
Web 5(4): 305-323; Jan 2002 

[3] Cao, P., Zhang, J. and Beach, K. Active Cache: 
Caching Dynamic Contents on the Web. In: 
Proc. of IFIP Intl. Conf. on Distributed Systems 
Platforms and Open Distributed Processing 
(Middleware’98), pp. 373-388. 

[4] Edge Side Includes. http://www.esi.org/ 

[5] Datta, A., Dutta, K., Thomas, H., VanderMeer, 
D., Suresha and Ramamritham, K. Proxy-Based 
Acceleration of Dynamically Generated Content 
on the World Wide Web: An Approach and 
Implementation. In: Proc. of ACM SIGMOD 
Intl. Conf. on Management of Data, Madison, 
Wisconsin, USA, June, 2002, pp. 97-108. 

[6] Douglis, F., Haro, A. and Rabinovich, M. HPP: 
HTML Macro-Preprocessing to Support 
Dynamic Document Caching. USENIX 
Symposium on Internet Technologies and 
Systems, December 1997, pp 83-94. 

[7] IBM WebSphere Application Server. 
http://www-3.ibm.com/software/webservers/app
serv/ 

[8] IBM WebSphere Edge Server. 
http://www-3.ibm.com/software/webservers/edg
eserver/ 

[9]  Iyengar, A. and Challenger, J. Improving Web 
Server Performance by Caching Dynamic Data. 
In: Proc. of the USENIX 1997 Symposium on 
Internet Technologies and Systems (USTIS’97), 

Monterey, CA, December 1997. 

[10] Labrinidis, A. and Roussopoulos, N. WebView 
Materialization. In: Proc. of the ACM SIGMOD 
Intl. Conf. on Management of Data, Dallas, 
Texas, USA, May 2000, pp. 367-378. 

[11] Li, W.S., Hsuing, W.P., Kalashnikov, D.V., Sion, 
R., Po, O., Agrawal, D. and Candan, K.S. Issues 
and Evaluations of Caching Solutions for Web 
Application Acceleration. In: The 28th Int. Conf. 
on Very Large Data Bases (VLDB 2002), Hong 
Kong, China, 20-23 August, 2002. 

[12] Microsoft .NET Pet Shop. 
http://www.gotdotnet.com/team/compare/petsho
p.aspx 

[13] Microsoft ASP.NET. http://www.asp.net/ 

[14] Microsoft ISA Server. 
http://www.microsoft.com/ISAServer/ 

[15] Myers, A., Chuang, J., Hengartner, U., Xie, Y., 
Zhuang, W. and Zhang, H.. A Secure, 
Publisher-Centric Web Caching Infrastructure. 
Proceedings of Infocom ’01 

[16] Oracle9iAS. http://www.oracle.com/appserver/ 

[17] Rabinovich, M., Xiao, Z., Douglis, F. and 
Kalmanek, C. Moving Edge Side Includes to the 
Real Edge – the Clients. 4th USENIX 
Symposium on Internet Technologies and 
Systems, March 2003 

[18] Shunra\Cloud. 
http://www.shunra.com/cloud.htm 

[19] Yagoub, K., Florescu, D., Valduriez, P. and 
Issarny, V. Caching Strategies for Data-Intensive 
Web Sites. In: Proc. of the Int. Conf. on Very 
Large Data Bases (VLDB), Cairo, Egypt, 10-14 
September, 2000. 

[20] Yuan, C., Chen, Y. and Zhang, Z. Evaluation of 
Edge Caching/Offloading for Dynamic Content 
Delivery. In: The 12th Int'l World Wide Web 
Conference (WWW 2003), Budapest, Hungary, 
2003. 

 

 


